These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26677143)

  • 1. Metal-mediated climate susceptibility in a warming world: Larval and latent effects on a model amphibian.
    Hallman TA; Brooks ML
    Environ Toxicol Chem; 2016 Jul; 35(7):1872-82. PubMed ID: 26677143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The deal with diel: Temperature fluctuations, asymmetrical warming, and ubiquitous metals contaminants.
    Hallman TA; Brooks ML
    Environ Pollut; 2015 Nov; 206():88-94. PubMed ID: 26142755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ameliorative effects of sodium chloride on acute copper toxicity among Cope's gray tree frog (Hyla chrysoscelis) and green frog (Rana clamitans) embryos.
    Brown MG; Dobbs EK; Snodgrass JW; Ownby DR
    Environ Toxicol Chem; 2012 Apr; 31(4):836-42. PubMed ID: 22278879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive effects of mean temperature, temperature variability, and chlorothalonil to red-eyed treefrog (Agalychnis callidryas) larvae.
    Alza CM; Donnelly MA; Whitfield SM
    Environ Toxicol Chem; 2016 Dec; 35(12):2998-3004. PubMed ID: 27163793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate warming mediates negative impacts of rapid pond drying for three amphibian species.
    O'Regan SM; Palen WJ; Anderson SC
    Ecology; 2014 Apr; 95(4):845-55. PubMed ID: 24933805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High sensitivity of embryo-larval stage of the Mediterranean mussel, Mytilus galloprovincialis to metal pollution in combination with temperature increase.
    Boukadida K; Banni M; Gourves PY; Cachot J
    Mar Environ Res; 2016 Dec; 122():59-66. PubMed ID: 27686387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warmer temperature modifies effects of polybrominated diphenyl ethers on hormone profiles in leopard frog tadpoles (Lithobates pipiens).
    Freitas MB; Brown CT; Karasov WH
    Environ Toxicol Chem; 2017 Jan; 36(1):120-127. PubMed ID: 27228472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Will temperature increases associated with climate change potentiate toxicity of environmentally relevant concentrations of chloride on larval green frogs (Lithobates clamitans)?
    Green FB; East AG; Salice CJ
    Sci Total Environ; 2019 Sep; 682():282-290. PubMed ID: 31121353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of contaminants and climate-related stressors: high temperature increases sensitivity to cadmium.
    Kimberly DA; Salice CJ
    Environ Toxicol Chem; 2013 Jun; 32(6):1337-43. PubMed ID: 23427064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.
    García E; Clemente S; Hernández JC
    Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva.
    Mos B; Kaposi KL; Rose AL; Kelaher B; Dworjanyn SA
    Environ Pollut; 2017 Sep; 228():190-200. PubMed ID: 28535490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.
    Verberk WC; Durance I; Vaughan IP; Ormerod SJ
    Glob Chang Biol; 2016 May; 22(5):1769-78. PubMed ID: 26924811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling warming predicts a physiological threshold for the extinction of the living fossil frog Calyptocephalella gayi.
    Vidal MA; Novoa-Muñoz F; Werner E; Torres C; Nova R
    J Therm Biol; 2017 Oct; 69():110-117. PubMed ID: 29037370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change, multiple stressors, and the decline of ectotherms.
    Rohr JR; Palmer BD
    Conserv Biol; 2013 Aug; 27(4):741-51. PubMed ID: 23773091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.
    Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP
    Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermal physiology of two sympatric treefrogs Hyla cinerea and Hyla chrysoscelis (Anura; Hylidae).
    Blem CR; Ragan CA; Scott LS
    Comp Biochem Physiol A Comp Physiol; 1986; 85(3):563-70. PubMed ID: 2878786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology.
    Verheyen J; Stoks R
    Environ Pollut; 2019 May; 248():209-218. PubMed ID: 30798022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on chronic toxicity of copper, zinc, and nickel to Daphnia magna.
    Pereira CMS; Deruytter D; Blust R; De Schamphelaere KAC
    Environ Toxicol Chem; 2017 Jul; 36(7):1909-1916. PubMed ID: 27976806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated multi-biomarker responses of juvenile seabass to diclofenac, warming and acidification co-exposure.
    Maulvault AL; Barbosa V; Alves R; Anacleto P; Camacho C; Cunha S; Fernandes JO; Ferreira PP; Rosa R; Marques A; Diniz M
    Aquat Toxicol; 2018 Sep; 202():65-79. PubMed ID: 30007156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms.
    Huey RB; Kingsolver JG
    Am Nat; 2019 Dec; 194(6):E140-E150. PubMed ID: 31738103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.