BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 26677627)

  • 1. [PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY].
    Zhang R; Tu Y; Zhao M; Chen C; Liang Haiqian ; Wang J; Zhang S; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1022-7. PubMed ID: 26677627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Preparation of three-dimensional porous scaffold of PLGA-silk fibroin-collagen nanofiber and its cytocompatibility study].
    Wu G; Dong C; Wang G; Gao W; Fan H; Xiao W; Zhang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Aug; 23(8):1007-11. PubMed ID: 19728623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental study on bone marrow mesenchymal stem cells seeded in chitosan-alginate scaffolds for repairing spinal cord injury].
    Wang D; Wen Y; Lan X; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Feb; 24(2):190-6. PubMed ID: 20187451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.
    Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH
    J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats.
    Ye JC; Qin Y; Wu YF; Wang P; Tang Y; Huang L; Ma MJ; Zeng YS; Shen HY
    Spinal Cord; 2016 Nov; 54(11):933-941. PubMed ID: 27001129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of bone marrow mesenchymal stem cells with acellular muscle bioscaffolds on repair of acute hemi-transection spinal cord injury in rats].
    Wei X; Wen Y; Zhang T; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1362-8. PubMed ID: 23230674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [APPLICATION OF THREE DIMENSIONAL PRINTING ON MANUFACTURING BIONIC SCAFFOLDS OF SPINAL CORD IN RATS].
    Chen Y; Wang J; Chen X; Chen C; Tu Y; Zhang S; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Mar; 29(3):364-7. PubMed ID: 26455206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preparation and biocompatibility evaluation of novel cartilage acellular matrix sponge].
    Liu T; Tan B; Luo J; Deng L; Xie H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Aug; 23(8):1002-6. PubMed ID: 19728622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Morphology research of the rat sciatic nerve bridged by collage-heparin sulfate scaffold].
    Wang SS; Hu YY; Luo ZJ; Chen LW; Liu HL; Meng GL; Lü R; Xu XZ
    Zhonghua Wai Ke Za Zhi; 2005 Apr; 43(8):531-4. PubMed ID: 15938914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of Nogo extracellular peptide residues 1-40 gene modification on survival and differentiation of neural stem cells after transplantation].
    Wang L; Song Y; Yuan H; Liu L; Gong Q; Kong Q; Yang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Nov; 27(11):1368-74. PubMed ID: 24501899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord.
    Xia L; Wan H; Hao SY; Li DZ; Chen G; Gao CC; Li JH; Yang F; Wang SG; Liu S
    Chin Med J (Engl); 2013 Mar; 126(5):909-17. PubMed ID: 23489801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair.
    Xu B; Zhao Y; Xiao Z; Wang B; Liang H; Li X; Fang Y; Han S; Li X; Fan C; Dai J
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28233428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [PREPARATION AND PERFORMANCE RESEARCH OF SILK FIBROIN COLLAGEN BLEND SCAFFOLD].
    Sun K; Nian Z; Xu C; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jul; 28(7):903-8. PubMed ID: 26462359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J
    Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells].
    Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury.
    Zhou X; Shi G; Fan B; Cheng X; Zhang X; Wang X; Liu S; Hao Y; Wei Z; Wang L; Feng S
    Int J Nanomedicine; 2018; 13():6265-6277. PubMed ID: 30349249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.