BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26678384)

  • 1. iRegulon and i-cisTarget: Reconstructing Regulatory Networks Using Motif and Track Enrichment.
    Verfaillie A; Imrichova H; Janky R; Aerts S
    Curr Protoc Bioinformatics; 2015 Dec; 52():2.16.1-2.16.39. PubMed ID: 26678384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.
    Janky R; Verfaillie A; Imrichová H; Van de Sande B; Standaert L; Christiaens V; Hulselmans G; Herten K; Naval Sanchez M; Potier D; Svetlichnyy D; Kalender Atak Z; Fiers M; Marine JC; Aerts S
    PLoS Comput Biol; 2014 Jul; 10(7):e1003731. PubMed ID: 25058159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly.
    Imrichová H; Hulselmans G; Atak ZK; Potier D; Aerts S
    Nucleic Acids Res; 2015 Jul; 43(W1):W57-64. PubMed ID: 25925574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.
    Wang X; Lin P; Ho JWK
    BMC Genomics; 2018 Jan; 19(Suppl 1):929. PubMed ID: 29363433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of Novel Human Gene Regulatory Modules from Gene Co-expression and Promoter Motif Analysis.
    Ma S; Snyder M; Dinesh-Kumar SP
    Sci Rep; 2017 Jul; 7(1):5557. PubMed ID: 28717181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial regulon modeling and prediction based on systematic cis regulatory motif analyses.
    Liu B; Zhou C; Li G; Zhang H; Zeng E; Liu Q; Ma Q
    Sci Rep; 2016 Mar; 6():23030. PubMed ID: 26975728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Genome-Wide TF Binding and Gene Expression Data to Characterize Gene Regulatory Networks in Plant Development.
    Chen D; Kaufmann K
    Methods Mol Biol; 2017; 1629():239-269. PubMed ID: 28623590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules.
    Herrmann C; Van de Sande B; Potier D; Aerts S
    Nucleic Acids Res; 2012 Aug; 40(15):e114. PubMed ID: 22718975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets.
    Kwon AT; Arenillas DJ; Worsley Hunt R; Wasserman WW
    G3 (Bethesda); 2012 Sep; 2(9):987-1002. PubMed ID: 22973536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data.
    Yang CC; Chen MH; Lin SY; Andrews EH; Cheng C; Liu CC; Chen JJ
    BMC Genomics; 2017 Jan; 18(1):61. PubMed ID: 28068916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data.
    Liu B; Yang J; Li Y; McDermaid A; Ma Q
    Brief Bioinform; 2018 Sep; 19(5):1069-1081. PubMed ID: 28334268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds.
    Mariani L; Weinand K; Vedenko A; Barrera LA; Bulyk ML
    Cell Syst; 2017 Sep; 5(3):187-201.e7. PubMed ID: 28957653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized motif discovery in gene regulatory sequences.
    Narang V; Mittal A; Sung WK
    Bioinformatics; 2010 May; 26(9):1152-9. PubMed ID: 20223835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions.
    Van Nostrand EL; Kim SK
    Genome Res; 2013 Jun; 23(6):941-53. PubMed ID: 23531767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.