These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26679096)

  • 1. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties.
    Ramakrishna S; Santhosh Kumar KS; Mathew D; Reghunadhan Nair CP
    Sci Rep; 2015 Dec; 5():18510. PubMed ID: 26679096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmentally durable superhydrophobic surfaces with robust photocatalytic self-cleaning and self-healing properties prepared via versatile film deposition methods.
    Huang Z; Gurney RS; Wang T; Liu D
    J Colloid Interface Sci; 2018 Oct; 527():107-116. PubMed ID: 29787946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances.
    Qing Y; Long C; An K; Hu C; Liu C
    J Colloid Interface Sci; 2019 Jul; 548():224-232. PubMed ID: 31004955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Superhydrophobic Surfaces via the Sand-In Method.
    Chen W; Wang W; Luong DX; Li JT; Granja V; Advincula PA; Ge C; Chyan Y; Yang K; Algozeeb WA; Higgs CF; Tour JM
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35053-35063. PubMed ID: 35862236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.
    Dong S; Wang Z; Wang Y; Bai X; Fu YQ; Guo B; Tan C; Zhang J; Hu P
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2174-2184. PubMed ID: 29265800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate.
    Chen J; Dou R; Cui D; Zhang Q; Zhang Y; Xu F; Zhou X; Wang J; Song Y; Jiang L
    ACS Appl Mater Interfaces; 2013 May; 5(10):4026-30. PubMed ID: 23642212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Healable Superhydrophobic Material.
    Qin L; Chu Y; Zhou X; Pan Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29388-29395. PubMed ID: 31313569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Self-Cleaning and Anti-Icing Durable Surface on Glass.
    Zuo Z; Liao R; Guo C; Zhao X; Zhuang A; Yuan Y
    J Nanosci Nanotechnol; 2017 Jan; 17(1):420-26. PubMed ID: 29624290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.
    Nine MJ; Cole MA; Johnson L; Tran DN; Losic D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28482-93. PubMed ID: 26632960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Self-Cleaning and Anti-Icing Durable Surface on Glass.
    Zuo Z; Liao R; Guo C; Zhao X; Zhuang A; Yuan Y
    J Nanosci Nanotechnol; 2017 Jan; 17(1):420-26. PubMed ID: 29624039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Texture and wettability of metallic lotus leaves.
    Frankiewicz C; Attinger D
    Nanoscale; 2016 Feb; 8(7):3982-90. PubMed ID: 26537609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties.
    Nine MJ; Tung TT; Alotaibi F; Tran DN; Losic D
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8393-8402. PubMed ID: 28192650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives.
    Erbil HY
    Langmuir; 2020 Mar; 36(10):2493-2509. PubMed ID: 32049544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single step method to fabricate durable superliquiphobic coating on aluminum surface with self-cleaning and anti-fogging properties.
    Nanda D; Varshney P; Satapathy M; Mohapatra SS; Bhushan B; Kumar A
    J Colloid Interface Sci; 2017 Dec; 507():397-409. PubMed ID: 28806659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil.
    Lu Y; Sathasivam S; Song J; Crick CR; Carmalt CJ; Parkin IP
    Science; 2015 Mar; 347(6226):1132-5. PubMed ID: 25745169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving Superhydrophobic Surfaces via Air-Assisted Electrospray.
    Nguyen T; Wortman P; He Z; Goulas J; Yan H; Mokhtari M; Zhou XD; Fei L
    Langmuir; 2022 Mar; 38(9):2852-2861. PubMed ID: 35192772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-Versatile Approach to Robust Antireflective and Superhydrophobic Coatings with Excellent Self-Cleaning Property in Varied Environments.
    Ren T; He J
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34367-34376. PubMed ID: 28929736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic SiC/CNTs Coatings with Photothermal Deicing and Passive Anti-Icing Properties.
    Jiang G; Chen L; Zhang S; Huang H
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36505-36511. PubMed ID: 30273481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.