These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 26679487)
1. Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery. Moono P; Putsathit P; Knight DR; Squire MM; Hampson DJ; Foster NF; Riley TV Anaerobe; 2016 Feb; 37():62-6. PubMed ID: 26679487 [TBL] [Abstract][Full Text] [Related]
2. Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Knight DR; Squire MM; Riley TV Appl Environ Microbiol; 2015 Jan; 81(1):119-23. PubMed ID: 25326297 [TBL] [Abstract][Full Text] [Related]
3. High prevalence of Clostridium difficile PCR ribotype 078 in pigs in Korea. Kim HY; Cho A; Kim JW; Kim H; Kim B Anaerobe; 2018 Jun; 51():42-46. PubMed ID: 29604338 [TBL] [Abstract][Full Text] [Related]
4. Longitudinal investigation of Clostridium difficile shedding in piglets. Weese JS; Wakeford T; Reid-Smith R; Rousseau J; Friendship R Anaerobe; 2010 Oct; 16(5):501-4. PubMed ID: 20708700 [TBL] [Abstract][Full Text] [Related]
5. Clostridium difficile in young farm animals and slaughter animals in Belgium. Rodriguez C; Taminiau B; Van Broeck J; Avesani V; Delmée M; Daube G Anaerobe; 2012 Dec; 18(6):621-5. PubMed ID: 23041559 [TBL] [Abstract][Full Text] [Related]
6. Prevalence and diversity of toxigenic Clostridium perfringens and Clostridium difficile among swine herds in the midwest. Baker AA; Davis E; Rehberger T; Rosener D Appl Environ Microbiol; 2010 May; 76(9):2961-7. PubMed ID: 20208029 [TBL] [Abstract][Full Text] [Related]
7. Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic piglets. Alvarez-Perez S; Blanco JL; Bouza E; Alba P; Gibert X; Maldonado J; Garcia ME Vet Microbiol; 2009 Jun; 137(3-4):302-5. PubMed ID: 19200665 [TBL] [Abstract][Full Text] [Related]
8. PCR-ribotype distribution of Clostridium difficile in Irish pigs. Stein K; Egan S; Lynch H; Harmanus C; Kyne L; Herra C; McDermott S; Kuijper E; Fitzpatrick F; FitzGerald S; Fenelon L; Drudy D Anaerobe; 2017 Dec; 48():237-241. PubMed ID: 29024758 [TBL] [Abstract][Full Text] [Related]
9. The relation between farm specific factors and prevalence of Clostridium difficile in slaughter pigs. Keessen EC; van den Berkt AJ; Haasjes NH; Hermanus C; Kuijper EJ; Lipman LJ Vet Microbiol; 2011 Dec; 154(1-2):130-4. PubMed ID: 21783332 [TBL] [Abstract][Full Text] [Related]
10. Clostridium difficile PCR ribotype 046 is common among neonatal pigs and humans in Sweden. Norén T; Johansson K; Unemo M Clin Microbiol Infect; 2014 Jan; 20(1):O2-6. PubMed ID: 23927574 [TBL] [Abstract][Full Text] [Related]
11. High prevalence of the epidemic Clostridium difficile PCR ribotype 078 in Iberian free-range pigs. Álvarez-Pérez S; Blanco JL; Peláez T; Astorga RJ; Harmanus C; Kuijper E; García ME Res Vet Sci; 2013 Oct; 95(2):358-61. PubMed ID: 23876331 [TBL] [Abstract][Full Text] [Related]
12. Rodents are carriers of Clostridioides difficile strains similar to those isolated from piglets. de Oliveira CA; de Paula Gabardo M; Guedes RMC; Poncet F; Blanc DS; Lobato FCF; Silva ROS Anaerobe; 2018 Jun; 51():61-63. PubMed ID: 29680295 [TBL] [Abstract][Full Text] [Related]
13. Molecular epidemiology of Clostridium difficile isolated from piglets. Putsathit P; Neela VK; Joseph NMS; Ooi PT; Ngamwongsatit B; Knight DR; Riley TV Vet Microbiol; 2019 Oct; 237():108408. PubMed ID: 31585650 [TBL] [Abstract][Full Text] [Related]
14. Is the prevalence of Clostridium difficile in animals underestimated? Blanco JL; Álvarez-Pérez S; García ME Vet J; 2013 Sep; 197(3):694-8. PubMed ID: 23911042 [TBL] [Abstract][Full Text] [Related]
15. Non-toxigenic strain of Clostridioides difficile Z31 reduces the occurrence of C. difficile infection (CDI) in one-day-old piglets on a commercial pig farm. Oliveira Júnior CA; Silva ROS; Lage AP; Coura FM; Ramos CP; Alfieri AA; Guedes RMC; Lobato FCF Vet Microbiol; 2019 Apr; 231():1-6. PubMed ID: 30955794 [TBL] [Abstract][Full Text] [Related]
16. Effect of Specimen Type and Processing on the Detection of Candel-Pérez C; Martínez-Miró S; Ros-Berruezo G; Martínez-Graciá C Foodborne Pathog Dis; 2019 Nov; 16(11):731-737. PubMed ID: 31225737 [TBL] [Abstract][Full Text] [Related]
17. Potentially hypervirulent Clostridium difficile PCR ribotype 078 lineage isolates in pigs and possible implications for humans in Taiwan. Wu YC; Lee JJ; Tsai BY; Liu YF; Chen CM; Tien N; Tsai PJ; Chen TH Int J Med Microbiol; 2016 Feb; 306(2):115-22. PubMed ID: 26915500 [TBL] [Abstract][Full Text] [Related]
18. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Knight DR; Putsathit P; Elliott B; Riley TV Clin Microbiol Infect; 2016 Mar; 22(3):266.e1-7. PubMed ID: 26686811 [TBL] [Abstract][Full Text] [Related]
19. Neonatal Piglets Are Protected from Clostridioides difficile Infection by Age-Dependent Increase in Intestinal Microbial Diversity. Proctor A; Cornick NA; Wang C; Mooyottu S; Arruda PA; Kobs K; Phillips GJ Microbiol Spectr; 2021 Oct; 9(2):e0124321. PubMed ID: 34550001 [TBL] [Abstract][Full Text] [Related]
20. Longitudinal study of Clostridium difficile shedding in raccoons on swine farms and conservation areas in Ontario, Canada. Bondo KJ; Weese JS; Rouseau J; Jardine CM BMC Vet Res; 2015 Oct; 11():254. PubMed ID: 26446591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]