These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 26679510)
41. Influence of the cathode microstructure on the stability of inverted planar perovskite solar cells. Sirotinskaya S; Schmechel R; Benson N RSC Adv; 2020 Jun; 10(40):23653-23661. PubMed ID: 35517353 [TBL] [Abstract][Full Text] [Related]
42. Multifunctional MgO Layer in Perovskite Solar Cells. Guo X; Dong H; Li W; Li N; Wang L Chemphyschem; 2015 Jun; 16(8):1727-32. PubMed ID: 25851999 [TBL] [Abstract][Full Text] [Related]
43. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Bag M; Renna LA; Adhikari RY; Karak S; Liu F; Lahti PM; Russell TP; Tuominen MT; Venkataraman D J Am Chem Soc; 2015 Oct; 137(40):13130-7. PubMed ID: 26414066 [TBL] [Abstract][Full Text] [Related]
44. Energetic Barriers to Interfacial Charge Transfer and Ion Movement in Perovskite Solar Cells. Sadollahkhani A; Liu P; Leandri V; Safdari M; Zhang W; Gardner JM Chemphyschem; 2017 Nov; 18(21):3047-3055. PubMed ID: 28840632 [TBL] [Abstract][Full Text] [Related]
45. Heat Treatment for Regenerating Degraded Low-Dimensional Perovskite Solar Cells. Ma C; Shen D; Qing J; Ng TW; Lo MF; Lee CS ACS Appl Mater Interfaces; 2018 Feb; 10(5):4860-4865. PubMed ID: 29286626 [TBL] [Abstract][Full Text] [Related]
46. Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells. Listorti A; Juarez-Perez EJ; Frontera C; Roiati V; Garcia-Andrade L; Colella S; Rizzo A; Ortiz P; Mora-Sero I J Phys Chem Lett; 2015 May; 6(9):1628-37. PubMed ID: 26263326 [TBL] [Abstract][Full Text] [Related]
47. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Aharon S; Gamliel S; El Cohen B; Etgar L Phys Chem Chem Phys; 2014 Jun; 16(22):10512-8. PubMed ID: 24736900 [TBL] [Abstract][Full Text] [Related]
48. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. Chiang YF; Jeng JY; Lee MH; Peng SR; Chen P; Guo TF; Wen TC; Hsu YJ; Hsu CM Phys Chem Chem Phys; 2014 Apr; 16(13):6033-40. PubMed ID: 24553998 [TBL] [Abstract][Full Text] [Related]
49. Optical and Electronic Losses Arising from Physically Mixed Interfacial Layers in Perovskite Solar Cells. Subedi B; Song Z; Chen C; Li C; Ghimire K; Junda MM; Subedi I; Yan Y; Podraza NJ ACS Appl Mater Interfaces; 2021 Feb; 13(4):4923-4934. PubMed ID: 33470116 [TBL] [Abstract][Full Text] [Related]
50. Degradation Mechanism of Silver Metal Deposited on Lead Halide Perovskites. Svanström S; Jacobsson TJ; Boschloo G; Johansson EMJ; Rensmo H; Cappel UB ACS Appl Mater Interfaces; 2020 Feb; 12(6):7212-7221. PubMed ID: 31958007 [TBL] [Abstract][Full Text] [Related]
51. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells. Guerrero A; Marchesi LF; Boix PP; Ruiz-Raga S; Ripolles-Sanchis T; Garcia-Belmonte G; Bisquert J ACS Nano; 2012 Apr; 6(4):3453-60. PubMed ID: 22463072 [TBL] [Abstract][Full Text] [Related]
52. Ruthenium acetylacetonate in interface engineering for high performance planar hybrid perovskite solar cells. Chen W; Luo S; Wan Z; Feng X; Liu X; He Z Opt Express; 2017 Apr; 25(8):A253-A263. PubMed ID: 28437893 [TBL] [Abstract][Full Text] [Related]
53. Effects of Small Polar Molecules (MA Ma C; Shen D; Qing J; Thachoth Chandran H; Lo MF; Lee CS ACS Appl Mater Interfaces; 2017 May; 9(17):14960-14966. PubMed ID: 28430418 [TBL] [Abstract][Full Text] [Related]
54. Comparative degradation and regeneration of polymer solar cells with different cathodes. Kumar P; Bilen C; Feron K; Nicolaidis NC; Gong BB; Zhou X; Belcher WJ; Dastoor PC ACS Appl Mater Interfaces; 2014 Apr; 6(7):5281-9. PubMed ID: 24625296 [TBL] [Abstract][Full Text] [Related]
55. Role of vertical segregation in semitransparent organic photovoltaics. Kovalenko A; Guerrero A; Garcia-Belmonte G ACS Appl Mater Interfaces; 2015 Jan; 7(2):1234-9. PubMed ID: 25522924 [TBL] [Abstract][Full Text] [Related]
56. Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells. Cho KT; Zhang Y; Orlandi S; Cavazzini M; Zimmermann I; Lesch A; Tabet N; Pozzi G; Grancini G; Nazeeruddin MK Nano Lett; 2018 Sep; 18(9):5467-5474. PubMed ID: 30134112 [TBL] [Abstract][Full Text] [Related]
57. Characteristics of in-substituted CZTS thin film and bifacial solar cell. Ge J; Chu J; Jiang J; Yan Y; Yang P ACS Appl Mater Interfaces; 2014 Dec; 6(23):21118-30. PubMed ID: 25340540 [TBL] [Abstract][Full Text] [Related]
58. Thermal degradation of the bulk and interfacial traps at 85 °C in perovskite photovoltaics. Yun AJ; Ryu S; Lim J; Kim J; Park B Nanoscale; 2023 Mar; 15(9):4334-4343. PubMed ID: 36748825 [TBL] [Abstract][Full Text] [Related]
59. Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. Barnea-Nehoshtan L; Kirmayer S; Edri E; Hodes G; Cahen D J Phys Chem Lett; 2014 Jul; 5(14):2408-13. PubMed ID: 26277807 [TBL] [Abstract][Full Text] [Related]
60. Lead methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation. Xu X; Zhang H; Cao K; Cui J; Lu J; Zeng X; Shen Y; Wang M ChemSusChem; 2014 Nov; 7(11):3088-94. PubMed ID: 25213607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]