BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26680014)

  • 41. Effect of nucleus replacement device properties on lumbar spine mechanics.
    Rundell SA; Guerin HL; Auerbach JD; Kurtz SM
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2022-32. PubMed ID: 19730210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles.
    Rupp TK; Ehlers W; Karajan N; Günther M; Schmitt S
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1081-105. PubMed ID: 25653134
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional anatomy of the caudal thoracolumbar and lumbosacral spine in the horse.
    Stubbs NC; Hodges PW; Jeffcott LB; Cowin G; Hodgson DR; McGowan CM
    Equine Vet J Suppl; 2006 Aug; (36):393-9. PubMed ID: 17402454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Obesity is associated with reduced disc height in the lumbar spine but not at the lumbosacral junction.
    Urquhart DM; Kurniadi I; Triangto K; Wang Y; Wluka AE; OʼSullivan R; Jones G; Cicuttini FM
    Spine (Phila Pa 1976); 2014 Jul; 39(16):E962-6. PubMed ID: 24825160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice.
    Bailey JF; Hargens AR; Cheng KK; Lotz JC
    J Biomech; 2014 Sep; 47(12):2983-8. PubMed ID: 25085756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensitivity of muscle and intervertebral disc force computations to variations in muscle attachment sites.
    Bayoglu R; Guldeniz O; Verdonschot N; Koopman B; Homminga J
    Comput Methods Biomech Biomed Engin; 2019 Nov; 22(14):1135-1143. PubMed ID: 31362525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transmission of weight through the lower thoracic and lumbar regions of the vertebral column in man.
    Pal GP; Routal RV
    J Anat; 1987 Jun; 152():93-105. PubMed ID: 3654379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of geometric individualisation of a human spine model on load sharing: neuro-musculoskeletal simulation reveals significant differences in ligament and muscle contribution.
    Meszaros-Beller L; Hammer M; Riede JM; Pivonka P; Little JP; Schmitt S
    Biomech Model Mechanobiol; 2023 Apr; 22(2):669-694. PubMed ID: 36602716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of posture in mechanics of the lumbar spine in compression.
    Shirazi-Adl A; Parnianpour M
    J Spinal Disord; 1996 Aug; 9(4):277-86. PubMed ID: 8877953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanical effect of posterior elements and ligamentous tissues of lumbar spine on load sharing.
    Najarian S; Dargahi J; Heidari B
    Biomed Mater Eng; 2005; 15(3):145-58. PubMed ID: 15911996
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo measurement of lumbar foramen during axial loading using a compression device and computed tomography.
    Iwata T; Miyamoto K; Hioki A; Ohashi M; Inoue N; Shimizu K
    J Spinal Disord Tech; 2013 Jul; 26(5):E177-82. PubMed ID: 23381186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs.
    Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine.
    Korez R; Likar B; Pernuš F; Vrtovec T
    Comput Med Imaging Graph; 2014 Oct; 38(7):596-605. PubMed ID: 24880891
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and function of the lumbar intervertebral disk in health, aging, and pathologic conditions.
    Lundon K; Bolton K
    J Orthop Sports Phys Ther; 2001 Jun; 31(6):291-303; discussion 304-6. PubMed ID: 11411624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
    Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK
    J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Incorporation of CT-based measurements of trunk anatomy into subject-specific musculoskeletal models of the spine influences vertebral loading predictions.
    Bruno AG; Mokhtarzadeh H; Allaire BT; Velie KR; De Paolis Kaluza MC; Anderson DE; Bouxsein ML
    J Orthop Res; 2017 Oct; 35(10):2164-2173. PubMed ID: 28092118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.