These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26680470)

  • 41. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photocatalytic water splitting with a quantum efficiency of almost unity.
    Takata T; Jiang J; Sakata Y; Nakabayashi M; Shibata N; Nandal V; Seki K; Hisatomi T; Domen K
    Nature; 2020 May; 581(7809):411-414. PubMed ID: 32461647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator.
    Iwashina K; Iwase A; Ng YH; Amal R; Kudo A
    J Am Chem Soc; 2015 Jan; 137(2):604-7. PubMed ID: 25551584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting.
    Takata T; Domen K
    Dalton Trans; 2017 Aug; 46(32):10529-10544. PubMed ID: 28589988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amorphous and Crystalline Sodium Tantalate Composites for Photocatalytic Water Splitting.
    Grewe T; Tüysüz H
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23153-62. PubMed ID: 26439706
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface nanostructures in photocatalysts for visible-light-driven water splitting.
    Maeda K; Domen K
    Top Curr Chem; 2011; 303():95-119. PubMed ID: 21516390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heterogeneous photocatalyst materials for water splitting.
    Kudo A; Miseki Y
    Chem Soc Rev; 2009 Jan; 38(1):253-78. PubMed ID: 19088977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient overall water splitting under visible-light irradiation on (Ga(1-x)Zn(x))(N(1-x)O(x)) dispersed with Rh-Cr mixed-oxide nanoparticles: Effect of reaction conditions on photocatalytic activity.
    Maeda K; Teramura K; Masuda H; Takata T; Saito N; Inoue Y; Domen K
    J Phys Chem B; 2006 Jul; 110(26):13107-12. PubMed ID: 16805621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting.
    Wang Z; Li C; Domen K
    Chem Soc Rev; 2019 Apr; 48(7):2109-2125. PubMed ID: 30328438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atomic-scale synthesis of nanoporous gallium-zinc oxynitride-reduced graphene oxide photocatalyst with tailored carrier transport mechanism.
    Adeli B; Taghipour F
    RSC Adv; 2020 Apr; 10(25):14906-14914. PubMed ID: 35497146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flux Synthesis of Layered Oxyhalide Bi
    Ogawa K; Nakada A; Suzuki H; Tomita O; Higashi M; Saeki A; Kageyama H; Abe R
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5642-5650. PubMed ID: 30146884
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles.
    Xiang Q; Yu J; Jaroniec M
    J Am Chem Soc; 2012 Apr; 134(15):6575-8. PubMed ID: 22458309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systematical investigation on characteristics of a photocatalyst: tantalum oxynitrides.
    Lu D; Kondo JN; Hara M; Takata T; Domen K
    Microscopy (Oxf); 2014 Aug; 63(4):313-24. PubMed ID: 24948708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation.
    Iwashina K; Kudo A
    J Am Chem Soc; 2011 Aug; 133(34):13272-5. PubMed ID: 21797261
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1.
    Wang Q; Hisatomi T; Jia Q; Tokudome H; Zhong M; Wang C; Pan Z; Takata T; Nakabayashi M; Shibata N; Li Y; Sharp ID; Kudo A; Yamada T; Domen K
    Nat Mater; 2016 Jun; 15(6):611-5. PubMed ID: 26950596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts.
    Wang W; Chen J; Li C; Tian W
    Nat Commun; 2014 Aug; 5():4647. PubMed ID: 25115942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activation of Water-Splitting Photocatalysts by Loading with Ultrafine Rh-Cr Mixed-Oxide Cocatalyst Nanoparticles.
    Kurashige W; Mori Y; Ozaki S; Kawachi M; Hossain S; Kawawaki T; Shearer CJ; Iwase A; Metha GF; Yamazoe S; Kudo A; Negishi Y
    Angew Chem Int Ed Engl; 2020 Apr; 59(18):7076-7082. PubMed ID: 32043742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting.
    Cui J; Li C; Zhang F
    ChemSusChem; 2019 May; 12(9):1872-1888. PubMed ID: 30211984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.