These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 26680539)
1. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs. Kao HJ; Huang CH; Bretaña NA; Lu CT; Huang KY; Weng SL; Lee TY BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S10. PubMed ID: 26680539 [TBL] [Abstract][Full Text] [Related]
2. Characterization and identification of protein O-GlcNAcylation sites with substrate specificity. Wu HY; Lu CT; Kao HJ; Chen YJ; Chen YJ; Lee TY BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S1. PubMed ID: 25521204 [TBL] [Abstract][Full Text] [Related]
3. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines. Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456 [TBL] [Abstract][Full Text] [Related]
4. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Alfaro JF; Gong CX; Monroe ME; Aldrich JT; Clauss TR; Purvine SO; Wang Z; Camp DG; Shabanowitz J; Stanley P; Hart GW; Hunt DF; Yang F; Smith RD Proc Natl Acad Sci U S A; 2012 May; 109(19):7280-5. PubMed ID: 22517741 [TBL] [Abstract][Full Text] [Related]
5. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs. Kao HJ; Weng SL; Huang KY; Kaunang FJ; Hsu JB; Huang CH; Lee TY BMC Syst Biol; 2017 Dec; 11(Suppl 7):137. PubMed ID: 29322938 [TBL] [Abstract][Full Text] [Related]
6. Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II. Lu L; Fan D; Hu CW; Worth M; Ma ZX; Jiang J Biochemistry; 2016 Feb; 55(7):1149-58. PubMed ID: 26807597 [TBL] [Abstract][Full Text] [Related]
7. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition. Weng SL; Kao HJ; Huang CH; Lee TY PLoS One; 2017; 12(6):e0179529. PubMed ID: 28662047 [TBL] [Abstract][Full Text] [Related]
8. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs. Bui VM; Lu CT; Ho TT; Lee TY Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868 [TBL] [Abstract][Full Text] [Related]
9. Liu L; Li L; Ma C; Shi Y; Liu C; Xiao Z; Zhang Y; Tian F; Gao Y; Zhang J; Ying W; Wang PG; Zhang L J Biol Chem; 2019 Nov; 294(45):16620-16633. PubMed ID: 31527085 [No Abstract] [Full Text] [Related]
10. dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. Wang J; Torii M; Liu H; Hart GW; Hu ZZ BMC Bioinformatics; 2011 Apr; 12():91. PubMed ID: 21466708 [TBL] [Abstract][Full Text] [Related]
11. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites. Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647 [TBL] [Abstract][Full Text] [Related]
12. Validation of the reliability of computational O-GlcNAc prediction. Jochmann R; Holz P; Sticht H; Stürzl M Biochim Biophys Acta; 2014 Feb; 1844(2):416-21. PubMed ID: 24332980 [TBL] [Abstract][Full Text] [Related]
13. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro. Qi J; Wang R; Zeng Y; Yu W; Gu Y Prep Biochem Biotechnol; 2017 Aug; 47(7):699-702. PubMed ID: 28296566 [TBL] [Abstract][Full Text] [Related]
14. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Smet-Nocca C; Broncel M; Wieruszeski JM; Tokarski C; Hanoulle X; Leroy A; Landrieu I; Rolando C; Lippens G; Hackenberger CP Mol Biosyst; 2011 May; 7(5):1420-9. PubMed ID: 21327254 [TBL] [Abstract][Full Text] [Related]
15. PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. Lee TY; Bretaña NA; Lu CT BMC Bioinformatics; 2011 Jun; 12():261. PubMed ID: 21703007 [TBL] [Abstract][Full Text] [Related]
16. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. Song W; Isaji T; Nakano M; Liang C; Fukuda T; Gu J FASEB J; 2022 Feb; 36(2):e22149. PubMed ID: 34981577 [TBL] [Abstract][Full Text] [Related]
17. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. Hu P; Shimoji S; Hart GW FEBS Lett; 2010 Jun; 584(12):2526-38. PubMed ID: 20417205 [TBL] [Abstract][Full Text] [Related]
19. A peptide panel investigation reveals the acceptor specificity of O-GlcNAc transferase. Liu X; Li L; Wang Y; Yan H; Ma X; Wang PG; Zhang L FASEB J; 2014 Aug; 28(8):3362-72. PubMed ID: 24760753 [TBL] [Abstract][Full Text] [Related]
20. Computational Prediction of Protein O-GlcNAc Modification. Jia C; Zuo Y Methods Mol Biol; 2018; 1754():235-246. PubMed ID: 29536447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]