These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26680730)

  • 1. A new method for assessing the contribution of Primary Biological Atmospheric Particles to the mass concentration of the atmospheric aerosol.
    Perrino C; Marcovecchio F
    Environ Int; 2016 Feb; 87():108-15. PubMed ID: 26680730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of Primary Biological Aerosol Particles to airborne particulate matter in indoor and outdoor environments.
    Marcovecchio F; Perrino C
    Chemosphere; 2021 Feb; 264(Pt 2):128510. PubMed ID: 33049501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of saccharides in size-fractionated ambient particulate matter and aerosol sources: the contribution of primary biological aerosol particles (PBAPs) and soil to ambient particulate matter.
    Jia Y; Fraser M
    Environ Sci Technol; 2011 Feb; 45(3):930-6. PubMed ID: 21214236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric particulate matter levels, chemical composition and optical absorbing properties in Camagüey, Cuba.
    Barja B; Mogo S; Cachorro VE; Antuña JC; Estevan R; Rodrigues A; de Frutos Á
    Environ Sci Process Impacts; 2013 Feb; 15(2):440-53. PubMed ID: 25208709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.
    de Miranda RM; Lopes F; do Rosário NÉ; Yamasoe MA; Landulfo E; de Fatima Andrade M
    Environ Monit Assess; 2016 Dec; 189(1):6. PubMed ID: 27921226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy).
    Contini D; Cesari D; Genga A; Siciliano M; Ielpo P; Guascito MR; Conte M
    Sci Total Environ; 2014 Feb; 472():248-61. PubMed ID: 24295746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size distribution of ambient aerosols in an industrial area.
    Rao BP; Srivastava A; Yasmin F; Ray S; Gupta N; Chauhan C; Rao CV; Wate SR
    Bull Environ Contam Toxicol; 2012 May; 88(5):717-21. PubMed ID: 22307732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mössbauer study of atmospheric iron-containing aerosol in the coarse and PM2.5 fractions measured in rural site.
    Kopcewicz B; Kopcewicz M; Pietruczuk A
    Chemosphere; 2015 Jul; 131():9-16. PubMed ID: 25765259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.
    Bernardoni V; Elser M; Valli G; Valentini S; Bigi A; Fermo P; Piazzalunga A; Vecchi R
    Environ Pollut; 2017 Dec; 231(Pt 1):601-611. PubMed ID: 28843899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil.
    Emygdio APM; Andrade MF; Gonçalves FLT; Engling G; Zanetti RHS; Kumar P
    Sci Total Environ; 2018 Jan; 612():809-821. PubMed ID: 28881304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation.
    Masiol M; Squizzato S; Ceccato D; Pavoni B
    Chemosphere; 2015 Jan; 119():400-406. PubMed ID: 25063963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India).
    Begam GR; Vachaspati CV; Ahammed YN; Kumar KR; Reddy RR; Sharma SK; Saxena M; Mandal TK
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1719-1734. PubMed ID: 27796981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonality in size-segregated ionic composition of ambient particulate pollutants over the Indo-Gangetic Plain: Source apportionment using PMF.
    Singh A; Rastogi N; Patel A; Singh D
    Environ Pollut; 2016 Dec; 219():906-915. PubMed ID: 27622841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale.
    Li W; Liu L; Xu L; Zhang J; Yuan Q; Ding X; Hu W; Fu P; Zhang D
    Sci Total Environ; 2020 Jun; 719():137520. PubMed ID: 32126409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.
    Paraskevopoulou D; Liakakou E; Gerasopoulos E; Mihalopoulos N
    Sci Total Environ; 2015 Sep; 527-528():165-78. PubMed ID: 25958364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synopsis of the temporal variation of particulate matter composition and size.
    Demerjian KL; Mohnen VA
    J Air Waste Manag Assoc; 2008 Feb; 58(2):216-33. PubMed ID: 18318338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric particulate mercury at the urban and forest sites in central Poland.
    Siudek P; Frankowski M; Siepak J
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2341-52. PubMed ID: 26411447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerosol size distribution and mass concentration measurements in various cities of Pakistan.
    Alam K; Blaschke T; Madl P; Mukhtar A; Hussain M; Trautmann T; Rahman S
    J Environ Monit; 2011 Jul; 13(7):1944-52. PubMed ID: 21677943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of aerosol size spectrum analysis as support to qualitative source apportionment studies.
    Manigrasso M; Febo A; Guglielmi F; Ciambottini V; Avino P
    Environ Pollut; 2012 Nov; 170():43-51. PubMed ID: 22766004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How salt lakes affect atmospheric new particle formation: A case study in Western Australia.
    Kamilli KA; Ofner J; Krause T; Sattler T; Schmitt-Kopplin P; Eitenberger E; Friedbacher G; Lendl B; Lohninger H; Schöler HF; Held A
    Sci Total Environ; 2016 Dec; 573():985-995. PubMed ID: 27599062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.