BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26680762)

  • 1. Dynamic Network Drivers of Seizure Generation, Propagation and Termination in Human Neocortical Epilepsy.
    Khambhati AN; Davis KA; Oommen BS; Chen SH; Lucas TH; Litt B; Bassett DS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004608. PubMed ID: 26680762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitions between multistable states as a model of epileptic seizure dynamics.
    Takeshita D; Sato YD; Bahar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051925. PubMed ID: 17677116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Proposed Mechanism for Spontaneous Transitions between Interictal and Ictal Activity.
    Jacob T; Lillis KP; Wang Z; Swiercz W; Rahmati N; Staley KJ
    J Neurosci; 2019 Jan; 39(3):557-575. PubMed ID: 30446533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent epileptiform activity in neural networks with weak excitatory synapses.
    van Drongelen W; Lee HC; Hereld M; Chen Z; Elsen FP; Stevens RL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):236-41. PubMed ID: 16003905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of resting state networks in focal neocortical seizures.
    Bandt SK; Bundy DT; Hawasli AH; Ayoub KW; Sharma M; Hacker CD; Pahwa M; Leuthardt EC
    PLoS One; 2014; 9(9):e107401. PubMed ID: 25247680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings.
    Chávez M; Le Van Quyen M; Navarro V; Baulac M; Martinerie J
    IEEE Trans Biomed Eng; 2003 May; 50(5):571-83. PubMed ID: 12769433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex.
    Tóth K; Hofer KT; Kandrács Á; Entz L; Bagó A; Erőss L; Jordán Z; Nagy G; Sólyom A; Fabó D; Ulbert I; Wittner L
    J Physiol; 2018 Jan; 596(2):317-342. PubMed ID: 29178354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.
    Elshoff L; Muthuraman M; Anwar AR; Deuschl G; Stephani U; Raethjen J; Siniatchkin M
    PLoS One; 2013; 8(10):e78422. PubMed ID: 24194931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscale spatiotemporal dynamics during neocortical propagation of human focal seizures.
    Wagner FB; Eskandar EN; Cosgrove GR; Madsen JR; Blum AS; Potter NS; Hochberg LR; Cash SS; Truccolo W
    Neuroimage; 2015 Nov; 122():114-30. PubMed ID: 26279211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From cognitive networks to seizures: stimulus evoked dynamics in a coupled cortical network.
    Lee J; Ermentrout B; Bodner M
    Chaos; 2013 Dec; 23(4):043111. PubMed ID: 24387550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-scale effects of neural interactions during human neocortical seizure activity.
    Eissa TL; Dijkstra K; Brune C; Emerson RG; van Putten MJAM; Goodman RR; McKhann GM; Schevon CA; van Drongelen W; van Gils SA
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10761-10766. PubMed ID: 28923948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology.
    Ibrahim GM; Anderson R; Akiyama T; Ochi A; Otsubo H; Singh-Cadieux G; Donner E; Rutka JT; Snead OC; Doesburg SM
    J Neurophysiol; 2013 Nov; 110(10):2475-83. PubMed ID: 24004529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitions between neocortical seizure and non-seizure-like states and their association with presynaptic glutamate release.
    Breton VL; Dufour S; Chinvarun Y; Del Campo JM; Bardakjian BL; Carlen PL
    Neurobiol Dis; 2020 Dec; 146():105124. PubMed ID: 33010482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Millimeter-scale epileptiform spike patterns and their relationship to seizures.
    Chamberlain AC; Viventi J; Blanco JA; Kim DH; Rogers JA; Litt B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():761-4. PubMed ID: 22254422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network analysis of the dynamics of seizure.
    Burns SP; Sritharan D; Jouny C; Bergey G; Crone N; Anderson WS; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4684-7. PubMed ID: 23366973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of inhibitory control in modulating focal seizure spread.
    Liou JY; Ma H; Wenzel M; Zhao M; Baird-Daniel E; Smith EH; Daniel A; Emerson R; Yuste R; Schwartz TH; Schevon CA
    Brain; 2018 Jul; 141(7):2083-2097. PubMed ID: 29757347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin.
    Misra A; Long X; Sperling MR; Sharan AD; Moxon KA
    Epilepsia; 2018 Mar; 59(3):636-649. PubMed ID: 29442363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexity evolution in epileptic seizure.
    Raiesdana S; Hashemi Golpayegani MR; Nasrabadi AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4110-3. PubMed ID: 19163616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neocortical seizure foci localization by means of a directed transfer function method.
    Wilke C; van Drongelen W; Kohrman M; He B
    Epilepsia; 2010 Apr; 51(4):564-72. PubMed ID: 19817817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy.
    Neubauer FB; Sederberg A; MacLean JN
    Front Neural Circuits; 2014; 8():101. PubMed ID: 25232306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.