BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26681395)

  • 1. Cell autonomous roles of Nedd4 in craniofacial bone formation.
    Wiszniak S; Harvey N; Schwarz Q
    Dev Biol; 2016 Feb; 410(1):98-107. PubMed ID: 26681395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ubiquitin ligase Nedd4 regulates craniofacial development by promoting cranial neural crest cell survival and stem-cell like properties.
    Wiszniak S; Kabbara S; Lumb R; Scherer M; Secker G; Harvey N; Kumar S; Schwarz Q
    Dev Biol; 2013 Nov; 383(2):186-200. PubMed ID: 24080509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E3-ubiquitin ligase NEDD4 enhances bone formation by removing TGFβ1-induced pSMAD1 in immature osteoblast.
    Jeon SA; Lee JH; Kim DW; Cho JY
    Bone; 2018 Nov; 116():248-258. PubMed ID: 30125728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development.
    Tan Y; Fu R; Liu J; Wu Y; Wang B; Jiang N; Nie P; Cao H; Yang Z; Fang B
    Biochem Biophys Res Commun; 2016 Jul; 475(4):308-14. PubMed ID: 27221046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tgfbeta3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest.
    Cheah FS; Winkler C; Jabs EW; Chong SS
    Mech Dev; 2010; 127(7-8):329-44. PubMed ID: 20406684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VEGF stimulates intramembranous bone formation during craniofacial skeletal development.
    Duan X; Bradbury SR; Olsen BR; Berendsen AD
    Matrix Biol; 2016; 52-54():127-140. PubMed ID: 26899202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRCA1 and BRCA2 tumor suppressors in neural crest cells are essential for craniofacial bone development.
    Kitami K; Kitami M; Kaku M; Wang B; Komatsu Y
    PLoS Genet; 2018 May; 14(5):e1007340. PubMed ID: 29718910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osterix is required for cranial neural crest-derived craniofacial bone formation.
    Baek WY; Kim YJ; de Crombrugghe B; Kim JE
    Biochem Biophys Res Commun; 2013 Mar; 432(1):188-92. PubMed ID: 23313488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction.
    Lecanda F; Warlow PM; Sheikh S; Furlan F; Steinberg TH; Civitelli R
    J Cell Biol; 2000 Nov; 151(4):931-44. PubMed ID: 11076975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ezh2 is required for neural crest-derived cartilage and bone formation.
    Schwarz D; Varum S; Zemke M; Schöler A; Baggiolini A; Draganova K; Koseki H; Schübeler D; Sommer L
    Development; 2014 Feb; 141(4):867-77. PubMed ID: 24496623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of craniofacial development by the collagen receptor, discoidin domain receptor 2.
    Mohamed FF; Ge C; Hallett SA; Bancroft AC; Cowling RT; Ono N; Binrayes AA; Greenberg B; Levi B; Kaartinen VM; Franceschi RT
    Elife; 2023 Jan; 12():. PubMed ID: 36656123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AP2-dependent signals from the ectoderm regulate craniofacial development in the zebrafish embryo.
    Knight RD; Javidan Y; Zhang T; Nelson S; Schilling TF
    Development; 2005 Jul; 132(13):3127-38. PubMed ID: 15944192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development.
    Noda K; Kitami M; Kitami K; Kaku M; Komatsu Y
    Proc Natl Acad Sci U S A; 2016 May; 113(19):E2589-97. PubMed ID: 27118846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest.
    Mori-Akiyama Y; Akiyama H; Rowitch DH; de Crombrugghe B
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9360-5. PubMed ID: 12878728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of overexpression of Dlx2 on the migration, proliferation and osteogenic differentiation of cranial neural crest stem cells.
    Dai J; Kuang Y; Fang B; Gong H; Lu S; Mou Z; Sun H; Dong Y; Lu J; Zhang W; Zhang J; Wang Z; Wang X; Shen G
    Biomaterials; 2013 Mar; 34(8):1898-910. PubMed ID: 23246068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phenotype-driven ENU mutagenesis screen identifies novel alleles with functional roles in early mouse craniofacial development.
    Sandell LL; Iulianella A; Melton KR; Lynn M; Walker M; Inman KE; Bhatt S; Leroux-Berger M; Crawford M; Jones NC; Dennis JF; Trainor PA
    Genesis; 2011 Apr; 49(4):342-59. PubMed ID: 21305688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells.
    Lohraseb I; McCarthy P; Secker G; Marchant C; Wu J; Ali N; Kumar S; Daly RJ; Harvey NL; Kawabe H; Kleifeld O; Wiszniak S; Schwarz Q
    Nat Commun; 2022 Apr; 13(1):2018. PubMed ID: 35440627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hes1 is required for the development of craniofacial structures derived from ectomesenchymal neural crest cells.
    Akimoto M; Kameda Y; Arai Y; Miura M; Nishimaki T; Takeda A; Uchinuma E
    J Craniofac Surg; 2010 Sep; 21(5):1443-9. PubMed ID: 20818256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation.
    Wang C; An J; Zhang P; Xu C; Gao K; Wu D; Wang D; Yu H; Liu JO; Yu L
    Biochem J; 2012 Jun; 444(2):279-89. PubMed ID: 22385262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins and patterning of craniofacial mesenchymal tissues.
    Noden DM
    J Craniofac Genet Dev Biol Suppl; 1986; 2():15-31. PubMed ID: 3491109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.