BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 26681519)

  • 1. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.
    Carvalho G; Schaffert RE; Malosetti M; Viana JH; Menezes CB; Silva LA; Guimaraes CT; Coelho AM; Kochian LV; van Eeuwijk FA; Magalhaes JV
    G3 (Bethesda); 2015 Dec; 6(2):475-84. PubMed ID: 26681519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum.
    Melo JO; Lana UG; Piñeros MA; Alves VM; Guimarães CT; Liu J; Zheng Y; Zhong S; Fei Z; Maron LG; Schaffert RE; Kochian LV; Magalhaes JV
    Plant J; 2013 Jan; 73(2):276-88. PubMed ID: 22989115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting sorghum genetic diversity for enhanced aluminum tolerance: Allele mining based on the Alt
    Hufnagel B; Guimaraes CT; Craft EJ; Shaff JE; Schaffert RE; Kochian LV; Magalhaes JV
    Sci Rep; 2018 Jul; 8(1):10094. PubMed ID: 29973700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, AltSB.
    Caniato FF; Hamblin MT; Guimaraes CT; Zhang Z; Schaffert RE; Kochian LV; Magalhaes JV
    PLoS One; 2014; 9(1):e87438. PubMed ID: 24498106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil.
    Bernardino KC; Pastina MM; Menezes CB; de Sousa SM; Maciel LS; Carvalho G; Guimarães CT; Barros BA; da Costa E Silva L; Carneiro PCS; Schaffert RE; Kochian LV; Magalhaes JV
    BMC Plant Biol; 2019 Feb; 19(1):87. PubMed ID: 30819116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance.
    Sivaguru M; Liu J; Kochian LV
    Plant J; 2013 Oct; 76(2):297-307. PubMed ID: 23865685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in
    Melo JO; Martins LGC; Barros BA; Pimenta MR; Lana UGP; Duarte CEM; Pastina MM; Guimaraes CT; Schaffert RE; Kochian LV; Fontes EPB; Magalhaes JV
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):313-318. PubMed ID: 30545913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between population structure and aluminum tolerance in cultivated sorghum.
    Caniato FF; Guimarães CT; Hamblin M; Billot C; Rami JF; Hufnagel B; Kochian LV; Liu J; Garcia AA; Hash CT; Ramu P; Mitchell S; Kresovich S; Oliveira AC; de Avellar G; Borém A; Glaszmann JC; Schaffert RE; Magalhaes JV
    PLoS One; 2011; 6(6):e20830. PubMed ID: 21695088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular markers associated with aluminium tolerance in
    Too EJ; Onkware AO; Were BA; Gudu S; Carlsson A; Geleta M
    Hereditas; 2018; 155():20. PubMed ID: 29686601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association mapping and genomic selection for sorghum adaptation to tropical soils of Brazil in a sorghum multiparental random mating population.
    Bernardino KC; de Menezes CB; de Sousa SM; Guimarães CT; Carneiro PCS; Schaffert RE; Kochian LV; Hufnagel B; Pastina MM; Magalhaes JV
    Theor Appl Genet; 2021 Jan; 134(1):295-312. PubMed ID: 33052425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae.
    Magalhaes JV; Garvin DF; Wang Y; Sorrells ME; Klein PE; Schaffert RE; Li L; Kochian LV
    Genetics; 2004 Aug; 167(4):1905-14. PubMed ID: 15342528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African sorghum.
    Leiser WL; Rattunde HF; Weltzien E; Cisse N; Abdou M; Diallo A; Tourè AO; Magalhaes JV; Haussmann BI
    BMC Plant Biol; 2014 Aug; 14():206. PubMed ID: 25112843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor.
    Doshi R; McGrath AP; Piñeros M; Szewczyk P; Garza DM; Kochian LV; Chang G
    Sci Rep; 2017 Dec; 7(1):17996. PubMed ID: 29269936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.
    Maron LG; Piñeros MA; Guimarães CT; Magalhaes JV; Pleiman JK; Mao C; Shaff J; Belicuas SN; Kochian LV
    Plant J; 2010 Mar; 61(5):728-40. PubMed ID: 20003133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.
    Zhou G; Pereira JF; Delhaize E; Zhou M; Magalhaes JV; Ryan PR
    J Exp Bot; 2014 Jun; 65(9):2381-90. PubMed ID: 24692647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench].
    Nagaraja Reddy R; Madhusudhana R; Murali Mohan S; Chakravarthi DV; Mehtre SP; Seetharama N; Patil JV
    Theor Appl Genet; 2013 Aug; 126(8):1921-39. PubMed ID: 23649648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.
    Magalhaes JV; Liu J; Guimarães CT; Lana UG; Alves VM; Wang YH; Schaffert RE; Hoekenga OA; Piñeros MA; Shaff JE; Klein PE; Carneiro NP; Coelho CM; Trick HN; Kochian LV
    Nat Genet; 2007 Sep; 39(9):1156-61. PubMed ID: 17721535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench).
    Xu W; Subudhi PK; Crasta OR; Rosenow DT; Mullet JE; Nguyen HT
    Genome; 2000 Jun; 43(3):461-9. PubMed ID: 10902709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns.
    Borrell AK; van Oosterom EJ; Mullet JE; George-Jaeggli B; Jordan DR; Klein PE; Hammer GL
    New Phytol; 2014 Aug; 203(3):817-30. PubMed ID: 24898064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-trait association mapping for phosphorous efficiency reveals flexible root architectures in sorghum.
    Hufnagel B; Bernardino KC; Malosetti M; Sousa SM; Silva LA; Guimaraes CT; Coelho AM; Santos TT; Viana JHM; Schaffert RE; Kochian LV; Eeuwijk FA; Magalhaes JV
    BMC Plant Biol; 2024 Jun; 24(1):562. PubMed ID: 38877425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.