These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26682410)

  • 1. Photoluminescence as a Probe of the Electrical Charge Dependence of Gold Nanoparticles.
    Obradovic M; Di Vece M; Asselberghs I; Grandjean D; Clays K; Lievens P
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9766-71. PubMed ID: 26682410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charging gold nanoparticles in ZnO by electric fields.
    Obradovic M; Di Vece M; Grandjean D; Houben K; Lievens P
    J Phys Condens Matter; 2016 Jan; 28(3):035303. PubMed ID: 26732742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ultraviolet and blue-violet photoluminescence of gold nanoparticles].
    Zhu J; Wang YC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):235-8. PubMed ID: 15852864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement.
    Fernandez-Garcia R; Rahmani M; Hong M; Maier SA; Sonnefraud Y
    Opt Express; 2013 May; 21(10):12552-61. PubMed ID: 23736474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Particle Photoluminescence and Dark-Field Scattering during Charge Density Tuning.
    Searles EK; Gomez E; Lee S; Ostovar B; Link S; Landes CF
    J Phys Chem Lett; 2023 Jan; 14(2):318-325. PubMed ID: 36603176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of glucose and glucose oxidase on the Uv-vis spectrum of gold nanoparticles: A study on optical biosensor for saliva glucose monitoring.
    Koushki E; Mirzaei Mohammadabadi F; Baedi J; Ghasedi A
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101771. PubMed ID: 32311543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence properties of sonochemically synthesized gold nanoparticles for DNA biosensing.
    Anandan S; Oh SD; Yoon M; Ashokkumar M
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):191-6. PubMed ID: 20363665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some more observations on the unique electrochemical properties of electrode-monolayer-nanoparticle constructs.
    Dyne J; Lin YS; Lai LM; Ginges JZ; Luais E; Peterson JR; Goon IY; Amal R; Gooding JJ
    Chemphyschem; 2010 Sep; 11(13):2807-13. PubMed ID: 20669213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of hydrodynamic properties of bare gold and silver nanoparticles as a fluorescent probe using its surface-plasmon-induced photoluminescence by fluorescence correlation spectroscopy.
    Prashanthi S; Lanke SR; Kumar PH; Siva D; Bangal PR
    Appl Spectrosc; 2012 Jul; 66(7):835-41. PubMed ID: 22710248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles.
    Ju S; Nguyen VL; Watekar PR; Kim BH; Jeong C; Boo S; Kim CJ; Han WT
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3555-8. PubMed ID: 17252810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles assume electrical potential according to substrate, size, and surface termination.
    Stehlik S; Petit T; Girard HA; Arnault JC; Kromka A; Rezek B
    Langmuir; 2013 Feb; 29(5):1634-41. PubMed ID: 23305296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    Anal Chem; 2013 Dec; 85(23):11225-32. PubMed ID: 24180262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of thiosalicylic acid stabilized gold nanoparticles.
    Pattabi RM; Pattabi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):195-9. PubMed ID: 19577955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles.
    Hua Y; Chandra K; Dam DH; Wiederrecht GP; Odom TW
    J Phys Chem Lett; 2015 Dec; 6(24):4904-8. PubMed ID: 26595327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene plasmon enhanced photoluminescence in ZnO microwires.
    Liu R; Fu XW; Meng J; Bie YQ; Yu DP; Liao ZM
    Nanoscale; 2013 Jun; 5(12):5294-8. PubMed ID: 23695346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers.
    Chhabra R; Sharma J; Wang H; Zou S; Lin S; Yan H; Lindsay S; Liu Y
    Nanotechnology; 2009 Dec; 20(48):485201. PubMed ID: 19880983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.