These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26682822)

  • 1. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions.
    Shi YZ; Jin L; Wang FH; Zhu XL; Tan ZJ
    Biophys J; 2015 Dec; 109(12):2654-2665. PubMed ID: 26682822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions.
    Jin L; Shi YZ; Feng CJ; Tan YL; Tan ZJ
    Biophys J; 2018 Oct; 115(8):1403-1416. PubMed ID: 30236782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway.
    Jin L; Tan YL; Wu Y; Wang X; Shi YZ; Tan ZJ
    RNA; 2019 Nov; 25(11):1532-1548. PubMed ID: 31391217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions.
    Shi YZ; Jin L; Feng CJ; Tan YL; Tan ZJ
    PLoS Comput Biol; 2018 Jun; 14(6):e1006222. PubMed ID: 29879103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D structure stability of the HIV-1 TAR RNA in ion solutions: A coarse-grained model study.
    Zhang BG; Qiu HH; Jiang J; Liu J; Shi YZ
    J Chem Phys; 2019 Oct; 151(16):165101. PubMed ID: 31675878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coarse-grained model with implicit salt for RNAs: predicting 3D structure, stability and salt effect.
    Shi YZ; Wang FH; Wu YY; Tan ZJ
    J Chem Phys; 2014 Sep; 141(10):105102. PubMed ID: 25217954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions.
    Mu ZC; Tan YL; Zhang BG; Liu J; Shi YZ
    PLoS Comput Biol; 2022 Oct; 18(10):e1010501. PubMed ID: 36260618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of counterion condensation in folding of the Tetrahymena ribozyme. II. Counterion-dependence of folding kinetics.
    Heilman-Miller SL; Pan J; Thirumalai D; Woodson SA
    J Mol Biol; 2001 May; 309(1):57-68. PubMed ID: 11491301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained model for predicting RNA folding thermodynamics.
    Denesyuk NA; Thirumalai D
    J Phys Chem B; 2013 May; 117(17):4901-11. PubMed ID: 23527587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Loop Composition and Ion Concentration Effects in RNA Hairpin Folding Stability.
    Zhao C; Zhang D; Jiang Y; Chen SJ
    Biophys J; 2020 Oct; 119(7):1439-1455. PubMed ID: 32949490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of loop composition on the stability and folding kinetics of RNA hairpins with large loops.
    Melnykov AV; Nayak RK; Hall KB; Van Orden A
    Biochemistry; 2015 Mar; 54(10):1886-96. PubMed ID: 25697574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge density of divalent metal cations determines RNA stability.
    Koculi E; Hyeon C; Thirumalai D; Woodson SA
    J Am Chem Soc; 2007 Mar; 129(9):2676-82. PubMed ID: 17295487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory and simulations for RNA folding in mixtures of monovalent and divalent cations.
    Nguyen HT; Hori N; Thirumalai D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21022-21030. PubMed ID: 31570624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt contribution to RNA tertiary structure folding stability.
    Tan ZJ; Chen SJ
    Biophys J; 2011 Jul; 101(1):176-87. PubMed ID: 21723828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions.
    Wang X; Tan YL; Yu S; Shi YZ; Tan ZJ
    Biophys J; 2023 Apr; 122(8):1503-1516. PubMed ID: 36924021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of two bulge loops on the stability of RNA duplexes.
    Crowther CV; Jones LE; Morelli JN; Mastrogiacomo EM; Porterfield C; Kent JL; Serra MJ
    RNA; 2017 Feb; 23(2):217-228. PubMed ID: 27872162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional structures of RNA obtained by means of knowledge-based interaction potentials.
    Taxilaga-Zetina O; Pliego-Pastrana P; Carbajal-Tinoco MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041914. PubMed ID: 20481760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.
    Tomcho JC; Tillman MR; Znosko BM
    Biochemistry; 2015 Sep; 54(34):5290-6. PubMed ID: 26286708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An implicit divalent counterion force field for RNA molecular dynamics.
    Henke PS; Mak CH
    J Chem Phys; 2016 Mar; 144(10):105104. PubMed ID: 26979708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.