These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26683062)

  • 1. Electrocortical activity distinguishes between uphill and level walking in humans.
    Bradford JC; Lukos JR; Ferris DP
    J Neurophysiol; 2016 Feb; 115(2):958-66. PubMed ID: 26683062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocortical activity is coupled to gait cycle phase during treadmill walking.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    Neuroimage; 2011 Jan; 54(2):1289-96. PubMed ID: 20832484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking.
    Jacobsen NA; Ferris DP
    J Physiol; 2023 Sep; 601(17):3921-3944. PubMed ID: 37522890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricted vision increases sensorimotor cortex involvement in human walking.
    Oliveira AS; Schlink BR; Hairston WD; König P; Ferris DP
    J Neurophysiol; 2017 Oct; 118(4):1943-1951. PubMed ID: 28679843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.
    Wagner J; Solis-Escalante T; Grieshofer P; Neuper C; Müller-Putz G; Scherer R
    Neuroimage; 2012 Nov; 63(3):1203-11. PubMed ID: 22906791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct β Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation.
    Wagner J; Makeig S; Gola M; Neuper C; Müller-Putz G
    J Neurosci; 2016 Feb; 36(7):2212-26. PubMed ID: 26888931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of corticospinal motor control during overground and treadmill walking in humans.
    Roeder L; Boonstra TW; Smith SS; Kerr GK
    J Neurophysiol; 2018 Sep; 120(3):1017-1031. PubMed ID: 29847229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faster Gait Speeds Reduce Alpha and Beta EEG Spectral Power From Human Sensorimotor Cortex.
    Nordin AD; Hairston WD; Ferris DP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):842-853. PubMed ID: 31199248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocortical correlates of human level-ground, slope, and stair walking.
    Luu TP; Brantley JA; Nakagome S; Zhu F; Contreras-Vidal JL
    PLoS One; 2017; 12(11):e0188500. PubMed ID: 29190704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolating gait-related movement artifacts in electroencephalography during human walking.
    Kline JE; Huang HJ; Snyder KL; Ferris DP
    J Neural Eng; 2015 Aug; 12(4):046022. PubMed ID: 26083595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocortical theta activity may reflect sensory prediction errors during adaptation to a gradual gait perturbation.
    Jacobsen NA; Ferris DP
    PeerJ; 2024; 12():e17451. PubMed ID: 38854799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking reduces sensorimotor network connectivity compared to standing.
    Lau TM; Gwin JT; Ferris DP
    J Neuroeng Rehabil; 2014 Feb; 11():14. PubMed ID: 24524394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking.
    Snyder KL; Kline JE; Huang HJ; Ferris DP
    Front Hum Neurosci; 2015; 9():639. PubMed ID: 26648858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spatial organization of gait-related electrocortical potentials.
    Knaepen K; Mierau A; Tellez HF; Lefeber D; Meeusen R
    Neurosci Lett; 2015 Jul; 599():75-80. PubMed ID: 26003448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocortical amplitude modulations of human level-ground, slope, and stair walking.
    Trieu Phat Luu ; Brantley JA; Fangshi Zhu ; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1913-1916. PubMed ID: 29060266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of movement artifact from high-density EEG recorded during walking and running.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    J Neurophysiol; 2010 Jun; 103(6):3526-34. PubMed ID: 20410364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.
    Sipp AR; Gwin JT; Makeig S; Ferris DP
    J Neurophysiol; 2013 Nov; 110(9):2050-60. PubMed ID: 23926037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobile neuroimaging: What we have learned about the neural control of human walking, with an emphasis on EEG-based research.
    Richer N; Bradford JC; Ferris DP
    Neurosci Biobehav Rev; 2024 Jul; 162():105718. PubMed ID: 38744350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking.
    Castermans T; Duvinage M; Cheron G; Dutoit T
    Neurosci Lett; 2014 Feb; 561():166-70. PubMed ID: 24412128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocortical Dynamics of Usual Walking and the Planning to Step over Obstacles in Parkinson's Disease.
    Vitório R; Lirani-Silva E; Orcioli-Silva D; Beretta VS; Oliveira AS; Gobbi LTB
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.