BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26683094)

  • 41. Cancer Subtype Discovery Based on Integrative Model of Multigenomic Data.
    Ge SG; Xia J; Sha W; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1115-1121. PubMed ID: 28113782
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local network component analysis for quantifying transcription factor activities.
    Shi Q; Zhang C; Guo W; Zeng T; Lu L; Jiang Z; Wang Z; Liu J; Chen L
    Methods; 2017 Jul; 124():25-35. PubMed ID: 28710010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of ovarian cancer associated genes using an integrated approach in a Boolean framework.
    Kumar G; Breen EJ; Ranganathan S
    BMC Syst Biol; 2013 Feb; 7():12. PubMed ID: 23383610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identifying mutated driver pathways in cancer by integrating multi-omics data.
    Wu J; Cai Q; Wang J; Liao Y
    Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CM-viewer: Visualizing interaction network of co-mutated and mutually exclusively mutated cancer genes.
    Zhou N; Hu Z; Wu C; Bao J
    Biosystems; 2018 Apr; 166():37-42. PubMed ID: 29278730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of supervised and sparse functional genomic pathways.
    Zhang F; Miecznikowski JC; Tritchler DL
    Stat Appl Genet Mol Biol; 2020 Feb; 19(1):. PubMed ID: 32109224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Our changing view of the genomic landscape of cancer.
    Bell DW
    J Pathol; 2010 Jan; 220(2):231-43. PubMed ID: 19918804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
    Colaprico A; Silva TC; Olsen C; Garofano L; Cava C; Garolini D; Sabedot TS; Malta TM; Pagnotta SM; Castiglioni I; Ceccarelli M; Bontempi G; Noushmehr H
    Nucleic Acids Res; 2016 May; 44(8):e71. PubMed ID: 26704973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Derivation of a fifteen gene prognostic panel for six cancers.
    Khirade MF; Lal G; Bapat SA
    Sci Rep; 2015 Aug; 5():13248. PubMed ID: 26272668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Throughput Genomic Profiling of Adult Solid Tumors Reveals Novel Insights into Cancer Pathogenesis.
    Hartmaier RJ; Albacker LA; Chmielecki J; Bailey M; He J; Goldberg ME; Ramkissoon S; Suh J; Elvin JA; Chiacchia S; Frampton GM; Ross JS; Miller V; Stephens PJ; Lipson D
    Cancer Res; 2017 May; 77(9):2464-2475. PubMed ID: 28235761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exome sequencing takes centre stage in cancer profiling.
    Maher B
    Nature; 2009 May; 459(7244):146-7. PubMed ID: 19444175
    [No Abstract]   [Full Text] [Related]  

  • 54. Probabilistic model of the human protein-protein interaction network.
    Rhodes DR; Tomlins SA; Varambally S; Mahavisno V; Barrette T; Kalyana-Sundaram S; Ghosh D; Pandey A; Chinnaiyan AM
    Nat Biotechnol; 2005 Aug; 23(8):951-9. PubMed ID: 16082366
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Jointly analyzing gene expression and copy number data in breast cancer using data reduction models.
    Berger JA; Hautaniemi S; Mitra SK; Astola J
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(1):2-16. PubMed ID: 17048389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types.
    Peng L; Bian XW; Li DK; Xu C; Wang GM; Xia QY; Xiong Q
    Sci Rep; 2015 Aug; 5():13413. PubMed ID: 26292924
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identify condition-specific gene co-expression networks.
    Kalluru V; Machiraju R; Huang K
    Int J Comput Biol Drug Des; 2013; 6(1-2):50-9. PubMed ID: 23428473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcriptional Profiles from Paired Normal Samples Offer Complementary Information on Cancer Patient Survival--Evidence from TCGA Pan-Cancer Data.
    Huang X; Stern DF; Zhao H
    Sci Rep; 2016 Feb; 6():20567. PubMed ID: 26837275
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.