These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26683352)

  • 1. Paramagnetic Nanoparticles Leave Their Mark on Nuclear Spins of Transiently Adsorbed Proteins.
    Zanzoni S; Pedroni M; D'Onofrio M; Speghini A; Assfalg M
    J Am Chem Soc; 2016 Jan; 138(1):72-5. PubMed ID: 26683352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces.
    Bortot A; Zanzoni S; D'Onofrio M; Assfalg M
    Chemistry; 2018 Apr; 24(22):5911-5919. PubMed ID: 29446497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein structure determination with paramagnetic solid-state NMR spectroscopy.
    Sengupta I; Nadaud PS; Jaroniec CP
    Acc Chem Res; 2013 Sep; 46(9):2117-26. PubMed ID: 23464364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhydroxylated [60]fullerene binds specifically to functional recognition sites on a monomeric and a dimeric ubiquitin.
    Zanzoni S; Ceccon A; Assfalg M; Singh RK; Fushman D; D'Onofrio M
    Nanoscale; 2015 Apr; 7(16):7197-205. PubMed ID: 25811293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multinuclear solid-state NMR spectroscopy of doped lanthanum fluoride nanoparticles.
    Lo AY; Sudarsan V; Sivakumar S; van Veggel F; Schurko RW
    J Am Chem Soc; 2007 Apr; 129(15):4687-700. PubMed ID: 17385858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SEMPRE: spectral editing mediated by paramagnetic relaxation enhancement.
    Kellner R; Mangels C; Schweimer K; Prasch SJ; Weiglmeier PR; Rösch P; Schwarzinger S
    J Am Chem Soc; 2009 Dec; 131(50):18016-7. PubMed ID: 19947644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the structure and dynamics of biomolecules by using soluble paramagnetic probes.
    Hocking HG; Zangger K; Madl T
    Chemphyschem; 2013 Sep; 14(13):3082-94. PubMed ID: 23836693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.
    Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature: the "ignored" factor at the NanoBio interface.
    Mahmoudi M; Abdelmonem AM; Behzadi S; Clement JH; Dutz S; Ejtehadi MR; Hartmann R; Kantner K; Linne U; Maffre P; Metzler S; Moghadam MK; Pfeiffer C; Rezaei M; Ruiz-Lozano P; Serpooshan V; Shokrgozar MA; Nienhaus GU; Parak WJ
    ACS Nano; 2013 Aug; 7(8):6555-62. PubMed ID: 23808533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation into the molecular and thermodynamic basis of protein interactions in multimodal chromatography using functionalized nanoparticles.
    Srinivasan K; Parimal S; Lopez MM; McCallum SA; Cramer SM
    Langmuir; 2014 Nov; 30(44):13205-16. PubMed ID: 25310519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a globular protein adsorbed to liposomal nanoparticles.
    Ceccon A; Lelli M; D'Onofrio M; Molinari H; Assfalg M
    J Am Chem Soc; 2014 Sep; 136(38):13158-61. PubMed ID: 25198387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR studies of BPTI aggregation by using paramagnetic relaxation reagents.
    Bernini A; Spiga O; Ciutti A; Venditti V; Prischi F; Governatori M; Bracci L; Lelli B; Pileri S; Botta M; Barge A; Laschi F; Niccolai N
    Biochim Biophys Acta; 2006 May; 1764(5):856-62. PubMed ID: 16627014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes.
    Jaroniec CP
    Solid State Nucl Magn Reson; 2012; 43-44():1-13. PubMed ID: 22464402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag.
    Huang F; Pei YY; Zuo HH; Chen JL; Yang Y; Su XC
    Chemistry; 2013 Dec; 19(50):17141-9. PubMed ID: 24307370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.
    Huang R; Carney RP; Ikuma K; Stellacci F; Lau BL
    ACS Nano; 2014 Jun; 8(6):5402-12. PubMed ID: 24882660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying the protein corona on nanoparticles by FCS.
    Nienhaus GU; Maffre P; Nienhaus K
    Methods Enzymol; 2013; 519():115-37. PubMed ID: 23280109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to the study of the interaction between proteins and nanoparticles.
    Turci F; Ghibaudi E; Colonna M; Boscolo B; Fenoglio I; Fubini B
    Langmuir; 2010 Jun; 26(11):8336-46. PubMed ID: 20205402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy.
    Ceccon A; Tugarinov V; Bax A; Clore GM
    J Am Chem Soc; 2016 May; 138(18):5789-92. PubMed ID: 27111298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR structures of paramagnetic metalloproteins.
    Arnesano F; Banci L; Piccioli M
    Q Rev Biophys; 2005 May; 38(2):167-219. PubMed ID: 16674835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.