These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 26683490)

  • 1. The Essential Complexity of Auditory Receptive Fields.
    Thorson IL; Liénard J; David SV
    PLoS Comput Biol; 2015 Dec; 11(12):e1004628. PubMed ID: 26683490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
    Yildiz IB; Mesgarani N; Deneve S
    J Neurosci; 2016 Dec; 36(49):12338-12350. PubMed ID: 27927954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2007 Sep; 148(3):806-14. PubMed ID: 17693032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic network model of temporal receptive fields in primary auditory cortex.
    Rahman M; Willmore BDB; King AJ; Harper NS
    PLoS Comput Biol; 2019 May; 15(5):e1006618. PubMed ID: 31059503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
    Homma NY; Atencio CA; Schreiner CE
    Neuroscience; 2021 Jul; 467():150-170. PubMed ID: 33951506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex.
    Klein DJ; Simon JZ; Depireux DA; Shamma SA
    J Comput Neurosci; 2006 Apr; 20(2):111-36. PubMed ID: 16518572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Context dependence of spectro-temporal receptive fields with implications for neural coding.
    Eggermont JJ
    Hear Res; 2011 Jan; 271(1-2):123-32. PubMed ID: 20123121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast tuned responses in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Eur J Neurosci; 2012 Feb; 35(4):550-61. PubMed ID: 22321018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
    Theunissen FE; Sen K; Doupe AJ
    J Neurosci; 2000 Mar; 20(6):2315-31. PubMed ID: 10704507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General properties of auditory spectro-temporal receptive fields.
    Mahajan NR; Mesgarani N; Hermansky H
    J Acoust Soc Am; 2019 Dec; 146(6):EL459. PubMed ID: 31893764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli.
    David SV; Mesgarani N; Fritz JB; Shamma SA
    J Neurosci; 2009 Mar; 29(11):3374-86. PubMed ID: 19295144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinearity of coding in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2010 Jan; 165(2):612-20. PubMed ID: 19853021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.
    Harper NS; Schoppe O; Willmore BD; Cui Z; Schnupp JW; King AJ
    PLoS Comput Biol; 2016 Nov; 12(11):e1005113. PubMed ID: 27835647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1?
    Fritz JB; Elhilali M; David SV; Shamma SA
    Hear Res; 2007 Jul; 229(1-2):186-203. PubMed ID: 17329048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral tuning of adaptation supports coding of sensory context in auditory cortex.
    Lopez Espejo M; Schwartz ZP; David SV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007430. PubMed ID: 31626624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex.
    Tomita M; Eggermont JJ
    J Neurophysiol; 2005 Jan; 93(1):378-92. PubMed ID: 15342718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory cortical receptive fields: stable entities with plastic abilities.
    Elhilali M; Fritz JB; Chi TS; Shamma SA
    J Neurosci; 2007 Sep; 27(39):10372-82. PubMed ID: 17898209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks.
    Fritz JB; Elhilali M; Shamma SA
    J Neurosci; 2005 Aug; 25(33):7623-35. PubMed ID: 16107649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.