These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 26683490)

  • 21. Estimating sparse spectro-temporal receptive fields with natural stimuli.
    David SV; Mesgarani N; Shamma SA
    Network; 2007 Sep; 18(3):191-212. PubMed ID: 17852750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STRFs in primary auditory cortex emerge from masking-based statistics of natural sounds.
    Sheikh AS; Harper NS; Drefs J; Singer Y; Dai Z; Turner RE; Lücke J
    PLoS Comput Biol; 2019 Jan; 15(1):e1006595. PubMed ID: 30653497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computational model of rapid task-related plasticity of auditory cortical receptive fields.
    Mesgarani N; Fritz J; Shamma S
    J Comput Neurosci; 2010 Feb; 28(1):19-27. PubMed ID: 19711179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
    Klein DJ; Depireux DA; Simon JZ; Shamma SA
    J Comput Neurosci; 2000; 9(1):85-111. PubMed ID: 10946994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
    Calabrese A; Schumacher JW; Schneider DM; Paninski L; Woolley SM
    PLoS One; 2011 Jan; 6(1):e16104. PubMed ID: 21264310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
    Meyer AF; Diepenbrock JP; Ohl FW; Anemüller J
    J Neurosci Methods; 2015 May; 246():119-33. PubMed ID: 25744059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectrotemporal contrast kernels for neurons in primary auditory cortex.
    Rabinowitz NC; Willmore BD; Schnupp JW; King AJ
    J Neurosci; 2012 Aug; 32(33):11271-84. PubMed ID: 22895711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.
    Poon PW; Yu PP
    Neurosci Lett; 2000 Jul; 289(1):9-12. PubMed ID: 10899396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds.
    Carlin MA; Elhilali M
    PLoS Comput Biol; 2013; 9(3):e1002982. PubMed ID: 23555217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct Manifestations of Cooperative, Multidimensional Stimulus Representations in Different Auditory Forebrain Stations.
    Shih JY; Yuan K; Atencio CA; Schreiner CE
    Cereb Cortex; 2020 May; 30(5):3130-3147. PubMed ID: 32047882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
    Qiu A; Schreiner CE; Escabí MA
    J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of precise spike timing in primary auditory cortex.
    Elhilali M; Fritz JB; Klein DJ; Simon JZ; Shamma SA
    J Neurosci; 2004 Feb; 24(5):1159-72. PubMed ID: 14762134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved stimulus representation by short interspike intervals in primary auditory cortex.
    Shih JY; Atencio CA; Schreiner CE
    J Neurophysiol; 2011 Apr; 105(4):1908-17. PubMed ID: 21307320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.
    Willmore BD; Schoppe O; King AJ; Schnupp JW; Harper NS
    J Neurosci; 2016 Jan; 36(2):280-9. PubMed ID: 26758822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Matching Pursuit Analysis of Auditory Receptive Fields' Spectro-Temporal Properties.
    Bach JH; Kollmeier B; Anemüller J
    Front Syst Neurosci; 2017; 11():4. PubMed ID: 28232791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linearity of cortical receptive fields measured with natural sounds.
    Machens CK; Wehr MS; Zador AM
    J Neurosci; 2004 Feb; 24(5):1089-100. PubMed ID: 14762127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Idealized computational models for auditory receptive fields.
    Lindeberg T; Friberg A
    PLoS One; 2015; 10(3):e0119032. PubMed ID: 25822973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analyzing variability in neural responses to complex natural sounds in the awake songbird.
    Graña GD; Billimoria CP; Sen K
    J Neurophysiol; 2009 Jun; 101(6):3147-57. PubMed ID: 19357333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal symmetry in primary auditory cortex: implications for cortical connectivity.
    Simon JZ; Depireux DA; Klein DJ; Fritz JB; Shamma SA
    Neural Comput; 2007 Mar; 19(3):583-638. PubMed ID: 17298227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.