These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 26683660)

  • 1. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo.
    Clark AJ; Coury EL; Meilhac AM; Petty HR
    Nanotechnology; 2016 Feb; 27(6):065101. PubMed ID: 26683660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells.
    Clark AJ; Petty HR
    Nanotechnology; 2016 Feb; 27(7):075103. PubMed ID: 26788907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light.
    Kim J; Lee CW; Choi W
    Environ Sci Technol; 2010 Sep; 44(17):6849-54. PubMed ID: 20698551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Liposomal Nanoplatinum for Targeted Cancer Chemophototherapy.
    Liu XL; Dong X; Yang SC; Lai X; Liu HJ; Gao Y; Feng HY; Zhu MH; Yuan Y; Lu Q; Lovell JF; Chen HZ; Fang C
    Adv Sci (Weinh); 2021 Apr; 8(8):2003679. PubMed ID: 33898179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation.
    Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J
    J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy.
    Sharker SM; Kim SM; Lee JE; Choi KH; Shin G; Lee S; Lee KD; Jeong JH; Lee H; Park SY
    J Control Release; 2015 Nov; 217():211-20. PubMed ID: 26381897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-catalytic Killing of HeLa Cancer Cells Using Facile Synthesized Pure and Ag Loaded WO
    AbuMousa RA; Baig U; Gondal MA; AlSalhi MS; Alqahtani FY; Akhtar S; Aleanizy FS; Dastageer MA
    Sci Rep; 2018 Oct; 8(1):15224. PubMed ID: 30323306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light".
    Leng W
    Environ Sci Technol; 2011 Apr; 45(7):3181-2; author reply 3183-4. PubMed ID: 21391657
    [No Abstract]   [Full Text] [Related]  

  • 10. Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer.
    Chang JE; Yoon IS; Sun PL; Yi E; Jheon S; Shim CK
    J Photochem Photobiol B; 2014 Nov; 140():49-56. PubMed ID: 25090224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic therapy using an anti-EGF receptor antibody complexed with verteporfin nanoparticles: a proof of concept study.
    Kameyama N; Matsuda S; Itano O; Ito A; Konno T; Arai T; Ishihara K; Ueda M; Kitagawa Y
    Cancer Biother Radiopharm; 2011 Dec; 26(6):697-704. PubMed ID: 21861705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation.
    Culcasi M; Benameur L; Mercier A; Lucchesi C; Rahmouni H; Asteian A; Casano G; Botta A; Kovacic H; Pietri S
    Chem Biol Interact; 2012 Sep; 199(3):161-76. PubMed ID: 22940227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics.
    Yuan Y; Feng G; Qin W; Tang BZ; Liu B
    Chem Commun (Camb); 2014 Aug; 50(63):8757-60. PubMed ID: 24967727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodynamic inactivation of viruses using upconversion nanoparticles.
    Lim ME; Lee YL; Zhang Y; Chu JJ
    Biomaterials; 2012 Feb; 33(6):1912-20. PubMed ID: 22153019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe.
    Liu J; Han J; Kang Z; Golamaully R; Xu N; Li H; Han X
    Nanoscale; 2014 Jun; 6(11):5770-6. PubMed ID: 24736832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric nanoparticles for photodynamic therapy.
    Lee YE; Kopelman R
    Methods Mol Biol; 2011; 726():151-78. PubMed ID: 21424449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A type I AIE photosensitiser-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy.
    Ning S; Zhang T; Lyu M; Lam JWY; Zhu D; Huang Q; Tang BZ
    Biomaterials; 2023 Apr; 295():122034. PubMed ID: 36746049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tin Tungstate Nanoparticles: A Photosensitizer for Photodynamic Tumor Therapy.
    Seidl C; Ungelenk J; Zittel E; Bergfeldt T; Sleeman JP; Schepers U; Feldmann C
    ACS Nano; 2016 Mar; 10(3):3149-57. PubMed ID: 26894966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer.
    Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S
    Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and in vitro studies of biodegradable modified chitosan nanoparticles for photodynamic treatment of cancer.
    Reza Saboktakin M; Tabatabaie RM; Maharramov A; Ali Ramazanov M
    Int J Biol Macromol; 2011 Dec; 49(5):1059-65. PubMed ID: 21907233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.