BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26683700)

  • 1. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.
    Shah MV; van Mastrigt O; Heijnen JJ; van Gulik WM
    Yeast; 2016 Apr; 33(4):145-61. PubMed ID: 26683700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions.
    Jamalzadeh E; Verheijen PJ; Heijnen JJ; van Gulik WM
    Appl Environ Microbiol; 2012 Feb; 78(3):705-16. PubMed ID: 22113915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of a C
    Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS
    Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain.
    Zelle RM; de Hulster E; Kloezen W; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2010 Feb; 76(3):744-50. PubMed ID: 20008165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular product recycling in high succinic acid producing yeast at low pH.
    Wahl SA; Bernal Martinez C; Zhao Z; van Gulik WM; Jansen MLA
    Microb Cell Fact; 2017 May; 16(1):90. PubMed ID: 28535757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae.
    Roa Engel CA; van Gulik WM; Marang L; van der Wielen LA; Straathof AJ
    Enzyme Microb Technol; 2011 Jan; 48(1):39-47. PubMed ID: 22112769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor.
    Bressler E; Pines O; Goldberg I; Braun S
    Biotechnol Prog; 2002; 18(3):445-50. PubMed ID: 12052057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.
    Xu G; Chen X; Liu L; Jiang L
    Bioresour Technol; 2013 Nov; 148():91-6. PubMed ID: 24045196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.
    Unden G; Strecker A; Kleefeld A; Kim OB
    EcoSal Plus; 2016 Jun; 7(1):. PubMed ID: 27415771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupling growth and succinic acid production in an industrial Saccharomyces cerevisiae strain.
    Liu Y; Esen O; Pronk JT; van Gulik WM
    Biotechnol Bioeng; 2021 Apr; 118(4):1576-1586. PubMed ID: 33410171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.
    van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J
    FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of fumaric acid by fermentation.
    Straathof AJ; van Gulik WM
    Subcell Biochem; 2012; 64():225-40. PubMed ID: 23080253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional expression of FumA in
    Zhang C; Shi M; Xu Y; Yang D; Lu L; Xue F; Xu Q
    Appl Environ Microbiol; 2024 Apr; 90(4):e0000824. PubMed ID: 38506527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export.
    van Maris AJ; Winkler AA; Porro D; van Dijken JP; Pronk JT
    Appl Environ Microbiol; 2004 May; 70(5):2898-905. PubMed ID: 15128549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
    Rhie MN; Yoon HE; Oh HY; Zedler S; Unden G; Kim OB
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1533-1544. PubMed ID: 24742960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion.
    Steyn A; Viljoen-Bloom M; Van Zyl WH
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36646426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconversion of fumaric acid to succinic acid by recombinant E. coli.
    Wang X; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1998; 70-72():919-28. PubMed ID: 9627403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering energetically efficient transport of dicarboxylic acids in yeast
    Darbani B; Stovicek V; van der Hoek SA; Borodina I
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19415-19420. PubMed ID: 31467169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.