These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26684129)

  • 21. Phase transitions of Dirac electrons in bismuth.
    Li L; Checkelsky JG; Hor YS; Uher C; Hebard AF; Cava RJ; Ong NP
    Science; 2008 Jul; 321(5888):547-50. PubMed ID: 18653888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-Dimensional Dirac Semimetals.
    Fu B; Zhu W; Shi Q; Li Q; Yang J; Zhang Z
    Phys Rev Lett; 2017 Apr; 118(14):146401. PubMed ID: 28430464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of phonons and dirac fermions on the surface of Bi2Se3: a strong Kohn anomaly.
    Zhu X; Santos L; Sankar R; Chikara S; Howard C; Chou FC; Chamon C; El-Batanouny M
    Phys Rev Lett; 2011 Oct; 107(18):186102. PubMed ID: 22107648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dirac Semimetals in Two Dimensions.
    Young SM; Kane CL
    Phys Rev Lett; 2015 Sep; 115(12):126803. PubMed ID: 26431004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of Fermi arc surface states in a topological metal.
    Xu SY; Liu C; Kushwaha SK; Sankar R; Krizan JW; Belopolski I; Neupane M; Bian G; Alidoust N; Chang TR; Jeng HT; Huang CY; Tsai WF; Lin H; Shibayev PP; Chou FC; Cava RJ; Hasan MZ
    Science; 2015 Jan; 347(6219):294-8. PubMed ID: 25593189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stochastic field theory for a dirac particle propagating in gauge field disorder.
    Guhr T; Wilke T; Weidenmuller HA
    Phys Rev Lett; 2000 Sep; 85(11):2252-5. PubMed ID: 10977984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corrections to the magnetoresistance formula for semimetals with Dirac electrons: the Boltzmann equation approach validated by the Kubo formula.
    Owada M; Awashima Y; Fuseya Y
    J Phys Condens Matter; 2018 Nov; 30(44):445601. PubMed ID: 30203784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-range, continuously tunable perfect absorbers based on Dirac semimetals.
    Shi X; Fang P; Zhai X; Li H; Wang L
    Opt Express; 2020 Mar; 28(5):7350-7359. PubMed ID: 32225965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topological tuning in three-dimensional dirac semimetals.
    Narayan A; Di Sante D; Picozzi S; Sanvito S
    Phys Rev Lett; 2014 Dec; 113(25):256403. PubMed ID: 25554898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective modes of the massless dirac plasma.
    Das Sarma S; Hwang EH
    Phys Rev Lett; 2009 May; 102(20):206412. PubMed ID: 19519055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-linear Terahertz driving of plasma waves in layered cuprates.
    Gabriele F; Udina M; Benfatto L
    Nat Commun; 2021 Feb; 12(1):752. PubMed ID: 33531492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly.
    Nam SH; Zhou J; Taylor AJ; Efimov A
    Opt Express; 2010 Nov; 18(24):25329-38. PubMed ID: 21164881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials.
    Sun L; Gao J; Yang X
    Opt Express; 2013 Sep; 21(18):21542-55. PubMed ID: 24104029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for spin-charge separation in quasi-one-dimensional organic conductors.
    Lorenz T; Hofmann M; Grüninger M; Freimuth A; Uhrig GS; Dumm M; Dressel M
    Nature; 2002 Aug; 418(6898):614-7. PubMed ID: 12167854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental realization of a three-dimensional Dirac semimetal.
    Borisenko S; Gibson Q; Evtushinsky D; Zabolotnyy V; Büchner B; Cava RJ
    Phys Rev Lett; 2014 Jul; 113(2):027603. PubMed ID: 25062235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Confinement of massless Dirac fermions in the graphene matrix induced by the B/N heteroatoms.
    Yu S; Zheng W; Ao Z; Li S
    Phys Chem Chem Phys; 2015 Feb; 17(8):5586-93. PubMed ID: 25588863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene.
    Kramberger C; Hambach R; Giorgetti C; Rümmeli MH; Knupfer M; Fink J; Büchner B; Reining L; Einarsson E; Maruyama S; Sottile F; Hannewald K; Olevano V; Marinopoulos AG; Pichler T
    Phys Rev Lett; 2008 May; 100(19):196803. PubMed ID: 18518473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves.
    Ueno K; Nozawa S; Misawa H
    Opt Express; 2015 Nov; 23(22):28584-92. PubMed ID: 26561128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube.
    Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL
    Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.