These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 26684135)

  • 1. Quantized Evolution of the Plasmonic Response in a Stretched Nanorod.
    Rossi TP; Zugarramurdi A; Puska MJ; Nieminen RM
    Phys Rev Lett; 2015 Dec; 115(23):236804. PubMed ID: 26684135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Charge Transfer Plasmon Metadevices.
    Gerislioglu B; Ahmadivand A
    Research (Wash D C); 2020; 2020():9468692. PubMed ID: 32055799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An asymmetric aluminum active quantum plasmonic device.
    Mokkath JH; Henzie J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1416-1421. PubMed ID: 31859295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoengineering of conductively coupled metallic nanoparticles towards selective resonance modes within the near-infrared regime.
    Hadilou N; Souri S; Navid HA; Sadighi Bonabi R; Anvari A
    Sci Rep; 2022 May; 12(1):7829. PubMed ID: 35550525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers.
    Varas A; García-González P; García-Vidal FJ; Rubio A
    J Phys Chem Lett; 2015 May; 6(10):1891-8. PubMed ID: 26263265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers.
    Teperik TV; Nordlander P; Aizpurua J; Borisov AG
    Opt Express; 2013 Nov; 21(22):27306-25. PubMed ID: 24216954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas.
    Zapata M; Camacho Beltrán ÁS; Borisov AG; Aizpurua J
    Opt Express; 2015 Mar; 23(6):8134-49. PubMed ID: 25837151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tapered arrangement of metallic nanorod chains for magnified plasmonic nanoimaging.
    Ohashi Y; Ranjan B; Saito Y; Umakoshi T; Verma P
    Sci Rep; 2019 Feb; 9(1):2656. PubMed ID: 30804466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.
    Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport.
    Song P; Nordlander P; Gao S
    J Chem Phys; 2011 Feb; 134(7):074701. PubMed ID: 21341863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.
    Muhammed MA; Döblinger M; Rodríguez-Fernández J
    J Am Chem Soc; 2015 Sep; 137(36):11666-77. PubMed ID: 26332445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length dependence of electron transport through molecular wires--a first principles perspective.
    Khoo KH; Chen Y; Li S; Quek SY
    Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon hybridization model generalized to conductively bridged nanoparticle dimers.
    Liu L; Wang Y; Fang Z; Zhao K
    J Chem Phys; 2013 Aug; 139(6):064310. PubMed ID: 23947858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles.
    Zapata Herrera M; Aizpurua J; Kazansky AK; Borisov AG
    Langmuir; 2016 Mar; 32(11):2829-40. PubMed ID: 26898378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of electron tunneling across plasmonic nanoparticle-film junctions using nitrile vibrations.
    Wang H; Yao K; Parkhill JA; Schultz ZD
    Phys Chem Chem Phys; 2017 Feb; 19(8):5786-5796. PubMed ID: 28180214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.