These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

983 related articles for article (PubMed ID: 26684222)

  • 1. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.
    Banerjee D; Bögli M; Dalmonte M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2013 Mar; 110(12):125303. PubMed ID: 25166816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ
    Barbiero L; Schweizer C; Aidelsburger M; Demler E; Goldman N; Grusdt F
    Sci Adv; 2019 Oct; 5(10):eaav7444. PubMed ID: 31646173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of non-Abelian gauge theories with optical lattices.
    Tagliacozzo L; Celi A; Orland P; Mitchell MW; Lewenstein M
    Nat Commun; 2013; 4():2615. PubMed ID: 24162080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced gauge fields for ultracold atoms.
    Goldman N; Juzeliūnas G; Öhberg P; Spielman IB
    Rep Prog Phys; 2014 Dec; 77(12):126401. PubMed ID: 25422950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical Quantum Phase Transitions in U(1) Quantum Link Models.
    Huang YP; Banerjee D; Heyl M
    Phys Rev Lett; 2019 Jun; 122(25):250401. PubMed ID: 31347880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
    Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R
    Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.
    Zohar E; Cirac JI; Reznik B
    Phys Rev Lett; 2013 Mar; 110(12):125304. PubMed ID: 25166817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.
    Kasamatsu K; Ichinose I; Matsui T
    Phys Rev Lett; 2013 Sep; 111(11):115303. PubMed ID: 24074102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.
    Banerjee D; Dalmonte M; Müller M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2012 Oct; 109(17):175302. PubMed ID: 23215198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Simulation of the Universal Features of the Polyakov Loop.
    Zhang J; Unmuth-Yockey J; Zeiher J; Bazavov A; Tsai SW; Meurice Y
    Phys Rev Lett; 2018 Nov; 121(22):223201. PubMed ID: 30547605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator.
    Yang B; Sun H; Ott R; Wang HY; Zache TV; Halimeh JC; Yuan ZS; Hauke P; Pan JW
    Nature; 2020 Nov; 587(7834):392-396. PubMed ID: 33208959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms.
    Zohar E; Reznik B
    Phys Rev Lett; 2011 Dec; 107(27):275301. PubMed ID: 22243314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold atoms meet lattice gauge theory.
    Aidelsburger M; Barbiero L; Bermudez A; Chanda T; Dauphin A; González-Cuadra D; Grzybowski PR; Hands S; Jendrzejewski F; Jünemann J; Juzeliūnas G; Kasper V; Piga A; Ran SJ; Rizzi M; Sierra G; Tagliacozzo L; Tirrito E; Zache TV; Zakrzewski J; Zohar E; Lewenstein M
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210064. PubMed ID: 34923836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms.
    Stannigel K; Hauke P; Marcos D; Hafezi M; Diehl S; Dalmonte M; Zoller P
    Phys Rev Lett; 2014 Mar; 112(12):120406. PubMed ID: 24724634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain-wall dynamics in Bose-Einstein condensates with synthetic gauge fields.
    Yao KX; Zhang Z; Chin C
    Nature; 2022 Feb; 602(7895):68-72. PubMed ID: 35110757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Abelian optical lattices: anomalous quantum Hall effect and Dirac fermions.
    Goldman N; Kubasiak A; Bermudez A; Gaspard P; Lewenstein M; Martin-Delgado MA
    Phys Rev Lett; 2009 Jul; 103(3):035301. PubMed ID: 19659289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-insulator transition revisited for cold atoms in non-Abelian gauge potentials.
    Satija II; Dakin DC; Clark CW
    Phys Rev Lett; 2006 Nov; 97(21):216401. PubMed ID: 17155755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum simulations with ultracold atoms in optical lattices.
    Gross C; Bloch I
    Science; 2017 Sep; 357(6355):995-1001. PubMed ID: 28883070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A scalable realization of local U(1) gauge invariance in cold atomic mixtures.
    Mil A; Zache TV; Hegde A; Xia A; Bhatt RP; Oberthaler MK; Hauke P; Berges J; Jendrzejewski F
    Science; 2020 Mar; 367(6482):1128-1130. PubMed ID: 32139542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.