These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26684538)

  • 61. Developing Colorimetric and Luminescence-Based High-Throughput Screening Platforms for Monitoring the GTPase Activity of Ferrous Iron Transport Protein B (FeoB).
    Veloria J; Shin M; Devkota AK; Payne SM; Cho EJ; Dalby KN
    SLAS Discov; 2019 Jun; 24(5):597-605. PubMed ID: 31039677
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [The role of iron-regulated genes in microbial pathogenesis].
    Kozyrev DP; Vasinova NA
    Tsitologiia; 2004; 46(5):465-73. PubMed ID: 15344893
    [TBL] [Abstract][Full Text] [Related]  

  • 63. New Escherichia coli outer membrane proteins identified through prediction and experimental verification.
    Marani P; Wagner S; Baars L; Genevaux P; de Gier JW; Nilsson I; Casadio R; von Heijne G
    Protein Sci; 2006 Apr; 15(4):884-9. PubMed ID: 16522795
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli.
    Chakraborty R; Storey E; van der Helm D
    Biometals; 2007 Jun; 20(3-4):263-74. PubMed ID: 17186377
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Examining Pathways of Iron and Sulfur Acquisition, Trafficking, Deployment, and Storage in Mineral-Grown Methanogen Cells.
    Payne D; Shepard EM; Spietz RL; Steward K; Brumfield S; Young M; Bothner B; Broderick WE; Broderick JB; Boyd ES
    J Bacteriol; 2021 Sep; 203(19):e0014621. PubMed ID: 34251867
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore.
    Seyedmohammad S; Fuentealba NA; Marriott RA; Goetze TA; Edwardson JM; Barrera NP; Venter H
    Biosci Rep; 2016; 36(2):. PubMed ID: 26934982
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ferrous Iron Uptake Is Required for Salmonella to Persist within Vacuoles of Host Cells.
    Domínguez-Acuña L; García-Del Portillo F
    Infect Immun; 2022 Jun; 90(6):e0014922. PubMed ID: 35536027
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Iron acquisition and transport in Staphylococcus aureus.
    Maresso AW; Schneewind O
    Biometals; 2006 Apr; 19(2):193-203. PubMed ID: 16718604
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fe(II), Mn(II), and Zn(II) Binding to the C-Terminal Region of FeoB Protein: An Insight into the Coordination Chemistry and Specificity of the
    Orzel B; Pelucelli A; Ostrowska M; Potocki S; Kozlowski H; Peana M; Gumienna-Kontecka E
    Inorg Chem; 2023 Nov; 62(45):18607-18624. PubMed ID: 37910812
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ferrous iron efflux systems in bacteria.
    Pi H; Helmann JD
    Metallomics; 2017 Jul; 9(7):840-851. PubMed ID: 28604884
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crystallization and preliminary X-ray diffraction analysis of the truncated cytosolic domain of the iron transporter FeoB.
    Jin Y; Hattori M; Nisimasu H; Ishitani R; Nureki O
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Aug; 65(Pt 8):784-7. PubMed ID: 19652339
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biochemical characterization of bacterial FeoBs: A perspective on nucleotide specificity.
    Shin M; Park J; Jin Y; Kim IJ; Payne SM; Kim KH
    Arch Biochem Biophys; 2020 May; 685():108350. PubMed ID: 32220566
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A review on bacterial redox dependent iron transporters and their evolutionary relationship.
    Banerjee S; Chanakira MN; Hall J; Kerkan A; Dasgupta S; Martin DW
    J Inorg Biochem; 2022 Apr; 229():111721. PubMed ID: 35033753
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments.
    Barton LL; Duarte AG; Staicu LC
    Biometals; 2023 Apr; 36(2):339-350. PubMed ID: 35767096
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Relevance of FeoAB system in Rhodanobacter sp. B2A1Ga4 resistance to heavy metals, aluminium, gallium, and indium.
    Caldeira JB; Chung AP; Morais PV; Branco R
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):3301-3314. PubMed ID: 33791837
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation.
    Lanigan N; Bottacini F; Casey PG; O'Connell Motherway M; van Sinderen D
    Front Microbiol; 2017; 8():964. PubMed ID: 28620359
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Gallium(III) Nitrate Inhibits Pathogenic
    Song T; Zhao X; Shao Y; Guo M; Li C; Zhang W
    J Microbiol Biotechnol; 2019 Jun; 29(6):973-983. PubMed ID: 31216793
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pumping iron: mechanisms for iron uptake by Campylobacter.
    Miller CE; Williams PH; Ketley JM
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3157-3165. PubMed ID: 19696110
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Studies on the X-Ray and Solution Structure of FeoB from Escherichia coli BL21.
    Hagelueken G; Hoffmann J; Schubert E; Duthie FG; Florin N; Konrad L; Imhof D; Behrmann E; Morgner N; Schiemann O
    Biophys J; 2016 Jun; 110(12):2642-2650. PubMed ID: 27332122
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural Determinants of
    Lee M; Magante K; Gómez-Garzón C; Payne SM; Smith AT
    bioRxiv; 2024 May; ():. PubMed ID: 38826458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.