BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 26684768)

  • 1. Development and initial evaluation of a finite element model of the pediatric craniocervical junction.
    Phuntsok R; Mazur MD; Ellis BJ; Ravindra VM; Brockmeyer DL
    J Neurosurg Pediatr; 2016 Apr; 17(4):497-503. PubMed ID: 26684768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling to compare craniocervical motion in two age-matched pediatric patients without or with Down syndrome: implications for the role of bony geometry in craniocervical junction instability.
    Astin JH; Wilkerson CG; Dailey AT; Ellis BJ; Brockmeyer DL
    J Neurosurg Pediatr; 2020 Nov; 27(2):218-224. PubMed ID: 33186914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FEBio finite element model of a pediatric cervical spine.
    Finley SM; Astin JH; Joyce E; Dailey AT; Brockmeyer DL; Ellis BJ
    J Neurosurg Pediatr; 2022 Feb; 29(2):218-224. PubMed ID: 34678779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The occipitoatlantal capsular ligaments are the primary stabilizers of the occipitoatlantal joint in the craniocervical junction: a finite element analysis.
    Phuntsok R; Ellis BJ; Herron MR; Provost CW; Dailey AT; Brockmeyer DL
    J Neurosurg Spine; 2019 Feb; 30(5):593-601. PubMed ID: 30771758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a finite element model of the occipito-atlantoaxial complex under physiologic loads.
    Zhang H; Bai J
    Spine (Phila Pa 1976); 2007 Apr; 32(9):968-74. PubMed ID: 17450071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation.
    Cheng BC; Hafez MA; Cunningham B; Serhan H; Welch WC
    Spine J; 2008; 8(5):821-6. PubMed ID: 17981098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Craniocervical fixation with occipital condyle screws: biomechanical analysis of a novel technique.
    Uribe JS; Ramos E; Youssef AS; Levine N; Turner AW; Johnson WM; Vale FL
    Spine (Phila Pa 1976); 2010 Apr; 35(9):931-8. PubMed ID: 20375778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine.
    Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD
    J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.
    Zafarparandeh I; Erbulut DU; Ozer AF
    Proc Inst Mech Eng H; 2016 Jul; 230(7):700-6. PubMed ID: 27107032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biomechanics of the craniocervical junction-a sequential sectioning of its stabilizing structures.
    Radcliff KE; Hussain MM; Moldavsky M; Klocke N; Vaccaro AR; Albert TJ; Khalil S; Bucklen B
    Spine J; 2015 Jul; 15(7):1618-28. PubMed ID: 25666697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cord pretension and stiffness of the Dynesys system spacer on the biomechanics of spinal decompression- a finite element study.
    Shih SL; Liu CL; Huang LY; Huang CH; Chen CS
    BMC Musculoskelet Disord; 2013 Jun; 14():191. PubMed ID: 23777265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of a three-dimensional finite element model of atlas and axis complex fracture].
    Tang XM; Liu C; Huang K; Zhu GT; Sun HL; Dai J; Tian JW
    Zhonghua Yi Xue Za Zhi; 2018 May; 98(19):1484-1488. PubMed ID: 29804415
    [No Abstract]   [Full Text] [Related]  

  • 14. [The biomechanical analysis of craniovertebral junction finite element model in atlas assimilation].
    Yin Y; Yu X; Wang P; Meng C; Zhang J
    Zhonghua Wai Ke Za Zhi; 2015 Mar; 53(3):211-4. PubMed ID: 26269018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical analysis of Goel technique for C1-2 fusion.
    Park J; Scheer JK; Lim TJ; Deviren V; Ames CP
    J Neurosurg Spine; 2011 May; 14(5):639-46. PubMed ID: 21332283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical investigation of a novel integrated device for intra-articular stabilization of the C1-C2 (atlantoaxial) joint.
    Robertson PA; Tsitsopoulos PP; Voronov LI; Havey RM; Patwardhan AG
    Spine J; 2012 Feb; 12(2):136-42. PubMed ID: 22341395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in spinal cord biomechanics after laminectomy, laminoplasty, and laminectomy with fusion for degenerative cervical myelopathy.
    Vedantam A; Harinathan B; Warraich A; Budde MD; Yoganandan N
    J Neurosurg Spine; 2023 Jul; 39(1):28-39. PubMed ID: 37029671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Three-Dimensional Nonlinear Finite Element Modeling and Analysis of Concomitant Atlanto-Occipital Fusion and Atlantoaxial Joint Dislocation].
    Xu CX; Tang B; Zeng XH; Huang SQ; Ma JP
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2022 Jan; 53(1):121-126. PubMed ID: 35048611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evaluation of a novel total cervical prosthesis in a single-level cervical subtotal corpectomy model: an in vitro human cadaveric study.
    Wu ZX; Han BJ; Zhao X; Kong L; Liu D; Cui G; Lei W
    J Surg Res; 2012 Jun; 175(1):76-81. PubMed ID: 21492873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.