BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26684886)

  • 1. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2015; 26(3-4):139-47. PubMed ID: 26684886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM.
    Ozeki K; Aoki H; Masuzawa T
    Biomed Mater Eng; 2011; 21(3):179-89. PubMed ID: 22072082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment.
    Ozeki K; Aoki H; Fukui Y
    J Biomed Mater Res A; 2006 Mar; 76(3):605-13. PubMed ID: 16278871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of hydroxyapatite thin films on zirconia using a sputtering technique.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2014; 24(5):1793-802. PubMed ID: 25201393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2014; 24(2):1447-56. PubMed ID: 24642972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment.
    Ozeki K; Mishima A; Yuhta T; Fukui Y; Aoki H
    Biomed Mater Eng; 2003; 13(4):451-63. PubMed ID: 14646059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses.
    Kim HW; Kim HE; Salih V; Knowles JC
    J Biomed Mater Res A; 2005 Sep; 74(3):294-305. PubMed ID: 16013054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    Biomaterials; 2005 Jun; 26(16):2947-56. PubMed ID: 15603789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique.
    Ozeki K; Yuhta T; Aoki H; Nishimura I; Fukui Y
    Biomed Mater Eng; 2000; 10(3-4):221-7. PubMed ID: 11202150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible.
    Ozeki K; Okuyama Y; Fukui Y; Aoki H
    Biomed Mater Eng; 2006; 16(4):243-51. PubMed ID: 16971742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique.
    Ozeki K; Masuzawa T; Aoki H
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():576-582. PubMed ID: 28024624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate.
    Nelea V; Morosanu C; Bercu M; Mihailescu IN
    J Mater Sci Mater Med; 2007 Dec; 18(12):2347-54. PubMed ID: 17569010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition.
    Cho Y; Hong J; Ryoo H; Kim D; Park J; Han J
    J Dent Res; 2015 Mar; 94(3):491-9. PubMed ID: 25586588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation characterization of hydroxyapatite on titanium by microarc oxidation and hydrothermal treatment.
    Liu F; Song Y; Wang F; Shimizu T; Igarashi K; Zhao L
    J Biosci Bioeng; 2005 Jul; 100(1):100-4. PubMed ID: 16233858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques.
    Massaro C; Baker MA; Cosentino F; Ramires PA; Klose S; Milella E
    J Biomed Mater Res; 2001; 58(6):651-7. PubMed ID: 11745517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of crystallographic orientation of titanium substrate on the structure and bioperformance of hydroxyapatite coatings.
    Rad AT; Novin M; Solati-Hashjin M; Vali H; Faghihi S
    Colloids Surf B Biointerfaces; 2013 Mar; 103():200-8. PubMed ID: 23201738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast response to titanium surfaces coated with strontium ranelate-loaded chitosan film.
    Tian A; Zhai JJ; Peng Y; Zhang L; Teng MH; Liao J; Sun X; Liang X
    Int J Oral Maxillofac Implants; 2014; 29(6):1446-53. PubMed ID: 25397808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering.
    Mello A; Hong Z; Rossi AM; Luan L; Farina M; Querido W; Eon J; Terra J; Balasundaram G; Webster T; Feinerman A; Ellis DE; Ketterson JB; Ferreira CL
    Biomed Mater; 2007 Jun; 2(2):67-77. PubMed ID: 18458438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of sputtered calcium phosphate coatings of different crystallinity on osteoblast differentiation.
    Berube P; Yang Y; Carnes DL; Stover RE; Boland EJ; Ong JL
    J Periodontol; 2005 Oct; 76(10):1697-709. PubMed ID: 16253092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.