These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26685017)

  • 1. Carbon nanotube-CdS core-shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature.
    Lu M; Wang X; Cao W; Yuan J; Cao M
    Nanotechnology; 2016 Feb; 27(6):065702. PubMed ID: 26685017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities.
    Lu MM; Cao MS; Chen YH; Cao WQ; Liu J; Shi HL; Zhang DQ; Wang WZ; Yuan J
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19408-15. PubMed ID: 26284741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires.
    Duan Y; Xiao Z; Yan X; Gao Z; Tang Y; Hou L; Li Q; Ning G; Li Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40078-40087. PubMed ID: 30379515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.
    Li D; Liao H; Kikuchi H; Liu T
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44704-44714. PubMed ID: 29199817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Electromagnetic Absorption Properties of Commercial Ni/MWCNTs Composites by Adjusting Dielectric Properties.
    Zhao PY; Wang HY; Wang GS
    Front Chem; 2020; 8():97. PubMed ID: 32185159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave Absorption Properties of Multi-Walled Carbon Nanotubes/Carbonyl Iron Particles/Polyurethane Foams.
    Huang X; Yu D; Wang S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and microwave absorption characterization of SiO2 coated Fe3O4-MWCNT composites.
    Hekmatara H; Seifi M; Forooraghi K; Mirzaee S
    Phys Chem Chem Phys; 2014 Nov; 16(43):24069-75. PubMed ID: 25288483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Investigation of Structural, Magnetic, and Microwave Absorption Properties of a SrAl
    Peymanfar R; Afghahi SSS; Javanshir S
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3911-3918. PubMed ID: 30764950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space-Confined Synthesis of Core-Shell BaTiO
    Cui L; Tian C; Tang L; Han X; Wang Y; Liu D; Xu P; Li C; Du Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31182-31190. PubMed ID: 31368297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stretchable and self-foaming polyurethane composite skeleton with thermally tunable microwave absorption properties.
    Ye F; He X; Zheng J; Li Y; Li M; Hu Z; Wang S; Tong G; Li X
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33631730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells.
    Zhao B; Shao G; Fan B; Zhao W; Xie Y; Zhang R
    Phys Chem Chem Phys; 2015 Apr; 17(14):8802-10. PubMed ID: 25745675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low temperature preparation of highly fluorinated multiwalled carbon nanotubes activated by Fe
    Liu Y; Zhang Y; Zhang C; Huang B; Li Y; Lai W; Wang X; Liu X
    Nanotechnology; 2018 Sep; 29(36):365703. PubMed ID: 29889048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Step Solvothermal Synthesis of (Zn
    Yin P; Zhang L; Wu H; Feng X; Wang J; Rao H; Wang Y; Dai J; Tang Y
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31718034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation.
    Liang C; Wang Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40690-40696. PubMed ID: 29088527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption.
    Yang N; Luo ZX; Zhu GR; Chen SC; Wang XL; Wu G; Wang YZ
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35987-35998. PubMed ID: 31496213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave absorption properties of core double-shell FeCo/C/BaTiO₃ nanocomposites.
    Jiang J; Li D; Geng D; An J; He J; Liu W; Zhang Z
    Nanoscale; 2014 Apr; 6(8):3967-71. PubMed ID: 24287893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic Property and Tunable Microwave Absorption of 3D Nets from Nickel Chains at Elevated Temperature.
    Liu J; Cao MS; Luo Q; Shi HL; Wang WZ; Yuan J
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22615-22. PubMed ID: 27509241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption.
    Huang L; Liu X; Chuai D; Chen Y; Yu R
    Sci Rep; 2016 Oct; 6():35377. PubMed ID: 27762327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.