These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26685063)
1. Chrysotile asbestos detoxification with a combined treatment of oxalic acid and silicates producing amorphous silica and biomaterial. Valouma A; Verganelaki A; Maravelaki-Kalaitzaki P; Gidarakos E J Hazard Mater; 2016 Mar; 305():164-170. PubMed ID: 26685063 [TBL] [Abstract][Full Text] [Related]
2. Magnesium oxide production from chrysotile asbestos detoxification with oxalic acid treatment. Valouma A; Verganelaki A; Tetoros I; Maravelaki-Kalaitzaki P; Gidarakos E J Hazard Mater; 2017 Aug; 336():93-100. PubMed ID: 28477559 [TBL] [Abstract][Full Text] [Related]
3. New detoxification processes for asbestos fibers in the environment. Turci F; Colonna M; Tomatis M; Mantegna S; Cravotto G; Fubini B J Toxicol Environ Health A; 2010; 73(5):368-77. PubMed ID: 20155579 [TBL] [Abstract][Full Text] [Related]
4. The combination of oxalic acid with power ultrasound fully degrades chrysotile asbestos fibres. Turci F; Tomatis M; Mantegna S; Cravotto G; Fubini B J Environ Monit; 2007 Oct; 9(10):1064-6. PubMed ID: 17909639 [TBL] [Abstract][Full Text] [Related]
5. Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. Favero-Longo SE; Turci F; Tomatis M; Castelli D; Bonfante P; Hochella MF; Piervittori R; Fubini B J Environ Monit; 2005 Aug; 7(8):764-6. PubMed ID: 16049575 [TBL] [Abstract][Full Text] [Related]
6. The effects of naturally occurring acids on the surface properties of chrysotile asbestos. Holmes EP; Lavkulich LM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1445-52. PubMed ID: 25072777 [TBL] [Abstract][Full Text] [Related]
7. A biomimetic approach to the chemical inactivation of chrysotile fibres by lichen metabolites. Turci F; Favero-Longo SE; Tomatis M; Martra G; Castelli D; Piervittori R; Fubini B Chemistry; 2007; 13(14):4081-93. PubMed ID: 17295378 [TBL] [Abstract][Full Text] [Related]
8. A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound. Turci F; Tomatis M; Mantegna S; Cravotto G; Fubini B Ultrason Sonochem; 2008 Apr; 15(4):420-427. PubMed ID: 17931951 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions. Anastasiadou K; Axiotis D; Gidarakos E J Hazard Mater; 2010 Jul; 179(1-3):926-32. PubMed ID: 20427128 [TBL] [Abstract][Full Text] [Related]
10. The effect of weathering on ecopersistence, reactivity, and potential toxicity of naturally occurring asbestos and asbestiform minerals. Enrico Favero-Longo S; Turci F; Tomatis M; Compagnoni R; Piervittori R; Fubini B J Toxicol Environ Health A; 2009; 72(5):305-14. PubMed ID: 19184746 [TBL] [Abstract][Full Text] [Related]
11. In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product. Gualtieri AF; Gualtieri ML; Tonelli M J Hazard Mater; 2008 Aug; 156(1-3):260-6. PubMed ID: 18234421 [TBL] [Abstract][Full Text] [Related]
12. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid. Nam SN; Jeong S; Lim H J Hazard Mater; 2014 Jan; 265():151-7. PubMed ID: 24361492 [TBL] [Abstract][Full Text] [Related]
13. Microwave-assisted acid treatment for the mineral transformation of chrysotile as an alternative for asbestos waste management. Essih S; Pardo L; Cecilia JA; Dos Santos-Gómez L; Colodrero RMP; Pozo M; Calero G; Franco F Environ Geochem Health; 2024 Jul; 46(9):332. PubMed ID: 39023801 [TBL] [Abstract][Full Text] [Related]
14. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals. Gadikota G; Natali C; Boschi C; Park AH J Hazard Mater; 2014 Jan; 264():42-52. PubMed ID: 24269972 [TBL] [Abstract][Full Text] [Related]
15. Structure Model and Toxicity of the Product of Biodissolution of Chrysotile Asbestos in the Lungs. Gualtieri AF; Lusvardi G; Pedone A; Di Giuseppe D; Zoboli A; Mucci A; Zambon A; Filaferro M; Vitale G; Benassi M; Avallone R; Pasquali L; Lassinantti Gualtieri M Chem Res Toxicol; 2019 Oct; 32(10):2063-2077. PubMed ID: 31464428 [TBL] [Abstract][Full Text] [Related]
16. Siderophore-mediated iron removal from chrysotile: Implications for asbestos toxicity reduction and bioremediation. Mohanty SK; Gonneau C; Salamatipour A; Pietrofesa RA; Casper B; Christofidou-Solomidou M; Willenbring JK J Hazard Mater; 2018 Jan; 341():290-296. PubMed ID: 28797944 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Nano-Sized Silicon Oxide, Iron Oxide and Carbonates from Chrysotile Asbestos. Baek J; Jo Y; Lee J; Choi S; Jeong H; Choi S; Jeong H; Roh Y J Nanosci Nanotechnol; 2017 Apr; 17(4):2610-612. PubMed ID: 29664246 [TBL] [Abstract][Full Text] [Related]
18. Interaction of bovine serum albumin with chrysotile: spectroscopic and morphological studies. Falini G; Foresti E; Lesci IG; Lunelli B; Sabatino P; Roveri N Chemistry; 2006 Feb; 12(7):1968-74. PubMed ID: 16358344 [TBL] [Abstract][Full Text] [Related]
19. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products. Sheehan P; Mowat F; Weidling R; Floyd M Ann Occup Hyg; 2010 Nov; 54(8):880-92. PubMed ID: 20923966 [TBL] [Abstract][Full Text] [Related]
20. Determination of low levels of free fibres of chrysotile in contaminated soils by X-ray diffraction and FTIR spectroscopy. Foresti E; Gazzano M; Gualtieri AF; Lesci IG; Lunelli B; Pecchini G; Renna E; Roveri N Anal Bioanal Chem; 2003 Jul; 376(5):653-8. PubMed ID: 12802568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]