These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26685111)

  • 1. Cy-preds: An algorithm and a web service for the analysis and prediction of cysteine reactivity.
    Soylu İ; Marino SM
    Proteins; 2016 Feb; 84(2):278-91. PubMed ID: 26685111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox biology: computational approaches to the investigation of functional cysteine residues.
    Marino SM; Gladyshev VN
    Antioxid Redox Signal; 2011 Jul; 15(1):135-46. PubMed ID: 20812876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein flexibility and cysteine reactivity: influence of mobility on the H-bond network and effects on pKa prediction.
    Marino SM
    Protein J; 2014 Aug; 33(4):323-36. PubMed ID: 24809821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids.
    Xu Y; Ding J; Wu LY
    PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput identification of catalytic redox-active cysteine residues.
    Fomenko DE; Xing W; Adair BM; Thomas DJ; Gladyshev VN
    Science; 2007 Jan; 315(5810):387-9. PubMed ID: 17234949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.
    Yang X; Wang J; Sun J; Liu R
    PLoS One; 2015; 10(7):e0133260. PubMed ID: 26176857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards more accurate prediction of protein folding rates: a review of the existing Web-based bioinformatics approaches.
    Chang CC; Tey BT; Song J; Ramanan RN
    Brief Bioinform; 2015 Mar; 16(2):314-24. PubMed ID: 24621527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D; Livesay DR
    BMC Bioinformatics; 2005 May; 6():116. PubMed ID: 15890082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepCys: Structure-based multiple cysteine function prediction method trained on deep neural network: Case study on domains of unknown functions belonging to COX2 domains.
    Nallapareddy V; Bogam S; Devarakonda H; Paliwal S; Bandyopadhyay D
    Proteins; 2021 Jul; 89(7):745-761. PubMed ID: 33580578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical 'omics' approaches for understanding protein cysteine oxidation in biology.
    Leonard SE; Carroll KS
    Curr Opin Chem Biol; 2011 Feb; 15(1):88-102. PubMed ID: 21130680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the oxidation state of cysteines by multiple sequence alignment.
    Fiser A; Simon I
    Bioinformatics; 2000 Mar; 16(3):251-6. PubMed ID: 10869018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-Based Prediction of Cysteine Reactivity Using Machine Learning.
    Wang H; Chen X; Li C; Liu Y; Yang F; Wang C
    Biochemistry; 2018 Jan; 57(4):451-460. PubMed ID: 29072073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated web service for improving alignment quality based on segments comparison.
    Plewczynski D; Rychlewski L; Ye Y; Jaroszewski L; Godzik A
    BMC Bioinformatics; 2004 Jul; 5():98. PubMed ID: 15271224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cpipe: a comprehensive computational platform for sequence and structure-based analyses of Cysteine residues.
    Soylu I; Marino SM
    Bioinformatics; 2017 Aug; 33(15):2395-2396. PubMed ID: 28369166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.