These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26685222)

  • 21. Constrained independent component analysis approach to nonobtrusive pulse rate measurements.
    Tsouri GR; Kyal S; Dianat S; Mestha LK
    J Biomed Opt; 2012 Jul; 17(7):077011. PubMed ID: 22894523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards using photo-plethysmogram amplitude to measure blood pressure during sleep.
    Chua EC; Redmond SJ; McDarby G; Heneghan C
    Ann Biomed Eng; 2010 Mar; 38(3):945-54. PubMed ID: 20049639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of ROI Selection for Facial Video-Based rPPG.
    Kim DY; Lee K; Sohn CB
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Living-Skin Classification via Remote-PPG.
    Wang W; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2781-2792. PubMed ID: 28278453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ballistocardiographic Artifacts in PPG Imaging.
    Moco AV; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1804-1811. PubMed ID: 26599525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remote photoplethysmography with constrained ICA using periodicity and chrominance constraints.
    Macwan R; Benezeth Y; Mansouri A
    Biomed Eng Online; 2018 Feb; 17(1):22. PubMed ID: 29426326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Illumination Robust Heart-rate Extraction from Single-wavelength Infrared Camera Using Spatial-channel Expansion.
    Hu J; He Y; Liu J; He M; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3896-3899. PubMed ID: 31946724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-iPPGNet: A novel one stage deep learning architecture based on depthwise separable convolutions for video-based pulse rate estimation.
    Ouzar Y; Djeldjli D; Bousefsaf F; Maaoui C
    Comput Biol Med; 2023 Mar; 154():106592. PubMed ID: 36709517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography.
    Song R; Chen H; Cheng J; Li C; Liu Y; Chen X
    IEEE J Biomed Health Inform; 2021 May; 25(5):1373-1384. PubMed ID: 33434140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise.
    Zhang Z; Pi Z; Liu B
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):522-31. PubMed ID: 25252274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Short-Term Event Extraction Algorithm for Biomedical Signals.
    Yazdani S; Fallet S; Vesin JM
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):754-762. PubMed ID: 28644795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Initial evaluation of prospective cardiac triggering using photoplethysmography signals recorded with a video camera compared to pulse oximetry and electrocardiography at 7T MRI.
    Spicher N; Kukuk M; Maderwald S; Ladd ME
    Biomed Eng Online; 2016 Nov; 15(1):126. PubMed ID: 27881126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heart rate estimation from facial photoplethysmography during dynamic illuminance changes.
    Dongseok Lee ; Jeehoon Kim ; Sungjun Kwon ; Kwangsuk Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2758-61. PubMed ID: 26736863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intestinal perfusion monitoring using photoplethysmography.
    Akl TJ; Wilson MA; Ericson MN; Coté GL
    J Biomed Opt; 2013 Aug; 18(8):87005. PubMed ID: 23942635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new quantitative evaluation method for age-related changes of individual pigmented spots in facial skin.
    Kikuchi K; Masuda Y; Yamashita T; Sato K; Katagiri C; Hirao T; Mizokami Y; Yaguchi H
    Skin Res Technol; 2016 Aug; 22(3):318-24. PubMed ID: 26725774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of Artifact-Resistive Technology Based on a Novel Dual Photoplethysmography Method for Wearable Pulse Rate Monitors.
    Zhou C; Feng J; Hu J; Ye X
    J Med Syst; 2016 Mar; 40(3):56. PubMed ID: 26645320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time realizable mobile imaging photoplethysmography.
    Lee H; Ko H; Chung H; Nam Y; Hong S; Lee J
    Sci Rep; 2022 May; 12(1):7141. PubMed ID: 35504945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Region of Interest Selection in Remote Photoplethysmography: Proof-of-Concept Study.
    Kiddle A; Barham H; Wegerif S; Petronzio C
    JMIR Form Res; 2023 Mar; 7():e44575. PubMed ID: 36995742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MMPD: Multi-Domain Mobile Video Physiology Dataset.
    Tang J; Chen K; Wang Y; Shi Y; Patel S; McDuff D; Liu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel approach using time-frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects.
    Selvaraj N; Shelley KH; Silverman DG; Stachenfeld N; Galante N; Florian JP; Mendelson Y; Chon K
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21518656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.