These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26685256)

  • 1. The Effects of Stimulation Strategy on Joint Movement Elicited by Intraspinal Microstimulation.
    Roshani A; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):794-805. PubMed ID: 26685256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation.
    Roshani A; Erfanian A
    J Neural Eng; 2016 Aug; 13(4):046024. PubMed ID: 27432551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.
    Normann RA; Dowden BR; Frankel MA; Wilder AM; Hiatt SD; Ledbetter NM; Warren DA; Clark GA
    J Neural Eng; 2012 Apr; 9(2):026019. PubMed ID: 22414699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation.
    Asadi AR; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):499-509. PubMed ID: 22711783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetetive hindlimb movement using intermittent adaptive neuromuscular electrical stimulation in an incomplete spinal cord injury rodent model.
    Fairchild MD; Kim SJ; Iarkov A; Abbas JJ; Jung R
    Exp Neurol; 2010 Jun; 223(2):623-33. PubMed ID: 20206164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats.
    Borrell JA; Frost SB; Peterson J; Nudo RJ
    J Neural Eng; 2017 Feb; 14(1):016007. PubMed ID: 27934789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses.
    Gaunt RA; Prochazka A; Mushahwar VK; Guevremont L; Ellaway PH
    J Neurophysiol; 2006 Dec; 96(6):2995-3005. PubMed ID: 16943320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspinal microstimulation preferentially recruits fatigue-resistant muscle fibres and generates gradual force in rat.
    Bamford JA; Putman CT; Mushahwar VK
    J Physiol; 2005 Dec; 569(Pt 3):873-84. PubMed ID: 16239281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation.
    Neyroud D; Dodd D; Gondin J; Maffiuletti NA; Kayser B; Place N
    J Appl Physiol (1985); 2014 May; 116(10):1281-9. PubMed ID: 24674861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspinal microstimulation using cylindrical multielectrodes.
    Snow S; Horch KW; Mushahwar VK
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):311-9. PubMed ID: 16485760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle.
    Westad C; Westgaard RH; De Luca CJ
    J Physiol; 2003 Oct; 552(Pt 2):645-56. PubMed ID: 14561844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of intraspinal microstimulation on spinal cord tissue in the rat.
    Bamford JA; Todd KG; Mushahwar VK
    Biomaterials; 2010 Jul; 31(21):5552-63. PubMed ID: 20430436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.
    Lin CC; Liu WC; Chan CC; Ju MS
    J Neural Eng; 2012 Apr; 9(2):026026. PubMed ID: 22422279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.
    Dowden BR; Wilder AM; Hiatt SD; Normann RA; Brown NA; Clark GA
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):545-52. PubMed ID: 19696002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B; Guevremont L; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hindlimb endpoint forces predict movement direction evoked by intraspinal microstimulation in cats.
    Lemay MA; Grasse D; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):379-89. PubMed ID: 19497827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy logic control of ankle movement using multi-electrode intraspinal microstimulation.
    Roshani A; Erfanian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5642-5. PubMed ID: 24111017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration.
    Bryson N; Lombardi L; Hawthorn R; Fei J; Keesey R; Peiffer JD; Seáñez I
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37419109
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation.
    Gondin J; Giannesini B; Vilmen C; Dalmasso C; le Fur Y; Cozzone PJ; Bendahan D
    Muscle Nerve; 2010 May; 41(5):667-78. PubMed ID: 20082417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.