These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26685259)

  • 1. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications.
    Li B; Sun M; Wang S; Guo W; Zhao C
    IEEE Trans Nanobioscience; 2016 Jan; 15(1):3-10. PubMed ID: 26685259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):208-22. PubMed ID: 25163066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Non-Coherent Signal Detection Techniques for Mobile Molecular Communication.
    Yu W; Liu F; Yan H; Lin L
    IEEE Trans Nanobioscience; 2023 Apr; 22(2):356-364. PubMed ID: 35877803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-ISI Demodulation Scheme and Its Experiment-Based Evaluation for Diffusion-Based Molecular Communication.
    Zhai H; Liu Q; Vasilakos AV; Yang K; Haoyang Zhai ; Qiang Liu ; Vasilakos AV; Kun Yang ; Liu Q; Yang K; Zhai H; Vasilakos AV
    IEEE Trans Nanobioscience; 2018 Apr; 17(2):126-133. PubMed ID: 29870336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ISI-mitigating modulation scheme using ion reaction for molecular communications.
    Jing D; Li Y; Hang R; Wu Z; Zhang H
    IET Nanobiotechnol; 2019 Sep; 13(7):674-681. PubMed ID: 31573535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.
    Chang G; Lin L; Yan H
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):21-35. PubMed ID: 29570072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achievable Strength-Based Signal Detection in Quantity-Constrained PAM OOK Concentration-Encoded Molecular Communication.
    Mahfuz MU
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):619-626. PubMed ID: 27834649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Complexity Adaptive Threshold Detection for Molecular Communication.
    Damrath M; Hoeher PA
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):200-8. PubMed ID: 26812729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Asymmetric-Distance Metrics for Decoding of Convolutional Codes in Diffusion-Based Molecular Communications.
    Li Q
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):469-481. PubMed ID: 31071051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thresholdless Detection of Symbols in Nano-Communication Systems.
    Sharma S; Deka K; Bhatia V
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):259-266. PubMed ID: 31796412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbol Synchronization for Diffusion-Based Molecular Communications.
    Jamali V; Ahmadzadeh A; Schober R
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):873-887. PubMed ID: 29364131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symbol interval optimization for molecular communication with drift.
    Kim NR; Eckford AW; Chae CB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):223-9. PubMed ID: 25163067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication.
    Huang S; Lin L; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving adaptive receivers performance in molecular communication via diffusion.
    Shahbazi A; Jamshidi A
    IET Nanobiotechnol; 2019 Jun; 13(4):441-448. PubMed ID: 31171750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Complexity Channel Codes for Reliable Molecular Communication via Diffusion.
    Figueiredo S; Souto N; Cercas F
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Complexity Adaptive Signal Detection for Mobile Molecular Communication.
    Mu X; Yan H; Li B; Liu M; Zheng R; Li Y; Lin L
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):237-248. PubMed ID: 31944963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative Abnormality Detection via Diffusive Molecular Communications.
    Mosayebi R; Jamali V; Ghoroghchian N; Schober R; Nasiri-Kenari M; Mehrabi M
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):828-842. PubMed ID: 29364127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal receiver design for diffusive molecular communication with flow and additive noise.
    Noel A; Cheung KC; Schober R
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):350-62. PubMed ID: 25095257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Enhancement of Diffusion-Based Molecular Communication.
    Dambri OA; Cherkaoui S
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):48-58. PubMed ID: 31647441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.