These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 26685993)

  • 1. Reverse Engineering and Evaluation of Prediction Models for Progression to Type 2 Diabetes: An Application of Machine Learning Using Electronic Health Records.
    Anderson JP; Parikh JR; Shenfeld DK; Ivanov V; Marks C; Church BW; Laramie JM; Mardekian J; Piper BA; Willke RJ; Rublee DA
    J Diabetes Sci Technol; 2015 Dec; 10(1):6-18. PubMed ID: 26685993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study.
    Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS
    J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.
    Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y
    PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration.
    Singh A; Nadkarni G; Gottesman O; Ellis SB; Bottinger EP; Guttag JV
    J Biomed Inform; 2015 Feb; 53():220-8. PubMed ID: 25460205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interpretable predictive deep learning platform for pediatric metabolic diseases.
    Javidi H; Mariam A; Alkhaled L; Pantalone KM; Rotroff DM
    J Am Med Inform Assoc; 2024 May; 31(6):1227-1238. PubMed ID: 38497983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning for Predicting the Risk of Transition from Prediabetes to Diabetes.
    Zueger T; Schallmoser S; Kraus M; Saar-Tsechansky M; Feuerriegel S; Stettler C
    Diabetes Technol Ther; 2022 Nov; 24(11):842-847. PubMed ID: 35848962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Type 2 Diabetes Based on Machine Learning Algorithm.
    Deberneh HM; Kim I
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33806973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model.
    Cahn A; Shoshan A; Sagiv T; Yesharim R; Goshen R; Shalev V; Raz I
    Diabetes Metab Res Rev; 2020 Feb; 36(2):e3252. PubMed ID: 31943669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Prediabetes Pathways Using Explainable AI on Data from Electronic Medical Records.
    Console D; Lenatti M; Simeone D; Keshavjee K; Guergachi A; Mongelli M; Paglialonga A
    Stud Health Technol Inform; 2024 Aug; 316():736-740. PubMed ID: 39176900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined strategy of feature selection and machine learning to identify predictors of prediabetes.
    De Silva K; Jönsson D; Demmer RT
    J Am Med Inform Assoc; 2020 Mar; 27(3):396-406. PubMed ID: 31889178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Machine Learning Models to Evaluate Hypoglycemia Risk in Type 2 Diabetes.
    Mueller L; Berhanu P; Bouchard J; Alas V; Elder K; Thai N; Hitchcock C; Hadzi T; Khalil I; Miller-Wilson LA
    Diabetes Ther; 2020 Mar; 11(3):681-699. PubMed ID: 32009223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and Electronic Health Record Data To Predict Longitudinal Kidney Outcomes.
    Chauhan K; Nadkarni GN; Fleming F; McCullough J; He CJ; Quackenbush J; Murphy B; Donovan MJ; Coca SG; Bonventre JV
    Kidney360; 2020 Aug; 1(8):731-739. PubMed ID: 35372952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of incident prediabetes and type 2 diabetes in a 7-year cohort in a developing country: The Isfahan Cohort Study.
    Sadeghi M; Talaei M; Parvaresh Rizi E; Dianatkhah M; Oveisgharan S; Sarrafzadegan N
    J Diabetes; 2015 Sep; 7(5):633-41. PubMed ID: 25350916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
    Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y
    JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records.
    Nguyen BP; Pham HN; Tran H; Nghiem N; Nguyen QH; Do TTT; Tran CT; Simpson CR
    Comput Methods Programs Biomed; 2019 Dec; 182():105055. PubMed ID: 31505379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes.
    Al-Kafaji G; Al-Mahroos G; Alsayed NA; Hasan ZA; Nawaz S; Bakhiet M
    Mol Med Rep; 2015 Nov; 12(5):7485-90. PubMed ID: 26460159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study.
    Shouval R; Labopin M; Bondi O; Mishan-Shamay H; Shimoni A; Ciceri F; Esteve J; Giebel S; Gorin NC; Schmid C; Polge E; Aljurf M; Kroger N; Craddock C; Bacigalupo A; Cornelissen JJ; Baron F; Unger R; Nagler A; Mohty M
    J Clin Oncol; 2015 Oct; 33(28):3144-51. PubMed ID: 26240227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.
    Choi BG; Rha SW; Kim SW; Kang JH; Park JY; Noh YK
    Yonsei Med J; 2019 Feb; 60(2):191-199. PubMed ID: 30666841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.