These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26686120)
1. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Powell LC; Khan S; Chinga-Carrasco G; Wright CJ; Hill KE; Thomas DW Carbohydr Polym; 2016 Feb; 137():191-197. PubMed ID: 26686120 [TBL] [Abstract][Full Text] [Related]
2. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Jack AA; Nordli HR; Powell LC; Powell KA; Kishnani H; Johnsen PO; Pukstad B; Thomas DW; Chinga-Carrasco G; Hill KE Carbohydr Polym; 2017 Feb; 157():1955-1962. PubMed ID: 27987916 [TBL] [Abstract][Full Text] [Related]
3. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development. Jack AA; Nordli HR; Powell LC; Farnell DJJ; Pukstad B; Rye PD; Thomas DW; Chinga-Carrasco G; Hill KE Biomacromolecules; 2019 Aug; 20(8):2953-2961. PubMed ID: 31251598 [TBL] [Abstract][Full Text] [Related]
4. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications. Rees A; Powell LC; Chinga-Carrasco G; Gethin DT; Syverud K; Hill KE; Thomas DW Biomed Res Int; 2015; 2015():925757. PubMed ID: 26090461 [TBL] [Abstract][Full Text] [Related]
5. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Pereira FD; Bonatto CC; Lopes CA; Pereira AL; Silva LP Microb Pathog; 2015 Sep; 86():32-7. PubMed ID: 26162295 [TBL] [Abstract][Full Text] [Related]
6. The effect of residual fibres on the micro-topography of cellulose nanopaper. Chinga-Carrasco G; Averianova N; Kondalenko O; Garaeva M; Petrov V; Leinsvang B; Karlsen T Micron; 2014 Jan; 56():80-4. PubMed ID: 24183789 [TBL] [Abstract][Full Text] [Related]
8. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. Chinga-Carrasco G; Syverud K J Biomater Appl; 2014 Sep; 29(3):423-32. PubMed ID: 24713295 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy. Kannan A; Karumanchi SL; Krishna V; Thiruvengadam K; Ramalingam S; Gautam P Scanning; 2014; 36(5):551-3. PubMed ID: 25042006 [TBL] [Abstract][Full Text] [Related]
10. Model system studies of the influence of bacterial biofilm formation on mineral surface reactivity. Brydie JR; Wogelius RA; Boult S; Merrifield CM; Vaughan DJ Biofouling; 2009; 25(5):463-72. PubMed ID: 19353390 [TBL] [Abstract][Full Text] [Related]
11. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications. Basu A; Heitz K; Strømme M; Welch K; Ferraz N Carbohydr Polym; 2018 Feb; 181():345-350. PubMed ID: 29253982 [TBL] [Abstract][Full Text] [Related]
12. Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm: quantitative comparative analysis using a rabbit ear model. Seth AK; Zhong A; Nguyen KT; Hong SJ; Leung KP; Galiano RD; Mustoe TA Wound Repair Regen; 2014; 22(6):712-9. PubMed ID: 25230854 [TBL] [Abstract][Full Text] [Related]
13. Oxygenated Nanocellulose-A Material Platform for Antibacterial Wound Dressing Devices. Knutsen MF; Agrenius K; Ugland H; Petronis S; Haglerod C; Håkansson J; Chinga-Carrasco G ACS Appl Bio Mater; 2021 Oct; 4(10):7554-7562. PubMed ID: 35006698 [TBL] [Abstract][Full Text] [Related]
15. Quartz tuning fork studies on the surface properties of Pseudomonas aeruginosa during early stages of biofilm formation. Otero J; Baños R; González L; Torrents E; Juárez A; Puig-Vidal M Colloids Surf B Biointerfaces; 2013 Feb; 102():117-23. PubMed ID: 23018019 [TBL] [Abstract][Full Text] [Related]
16. Atomic force microscopy in biofilm study. Chatterjee S; Biswas N; Datta A; Dey R; Maiti P Microscopy (Oxf); 2014 Aug; 63(4):269-78. PubMed ID: 24793174 [TBL] [Abstract][Full Text] [Related]
17. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. Le Bras D; Strømme M; Mihranyan A J Phys Chem B; 2015 May; 119(18):5911-7. PubMed ID: 25885570 [TBL] [Abstract][Full Text] [Related]
19. A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications. Pachuau LS Mini Rev Med Chem; 2015; 15(7):543-52. PubMed ID: 25877601 [TBL] [Abstract][Full Text] [Related]
20. Nanocellulose and its Composites for Biomedical Applications. Dumanli AG Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]