These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 26686419)

  • 41. RSL1D1 knockdown induces ferroptosis and mediates ferrous iron accumulation in senescent cells by inhibiting FTH1 mRNA stability.
    Jin Y; Zhao L; Wang S; Zhang X; Quan J; Lin Z; Piao J
    Carcinogenesis; 2023 May; 44(2):129-142. PubMed ID: 36913375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Take your mother's ferry: preimplantation embryo development requires maternal karyopherins for nuclear transport.
    Sharif M; Detti L; Van den Veyver IB
    J Clin Invest; 2023 Jan; 133(2):. PubMed ID: 36647833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RSL1D1 modulates cell senescence and proliferation via regulation of PPARγ mRNA stability.
    Jiang Z; Hao F; Zhu F; Yuan F; Ma L; Li G; Chen J; Tong T
    Life Sci; 2022 Oct; 307():120848. PubMed ID: 35940221
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations in DNA binding domain of p53 impede RSL1D1-p53 interaction to escape from degradation in human colorectal cancer cells.
    Ding L; Zhao C; Xu Y; Zhang Z; Nie Y; Liao K; Chen Y; Tu B; Zhang X
    Exp Cell Res; 2022 Aug; 417(1):113211. PubMed ID: 35597299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RSL1D1 promotes the progression of colorectal cancer through RAN-mediated autophagy suppression.
    Liu X; Chen J; Long X; Lan J; Liu X; Zhou M; Zhang S; Zhou J
    Cell Death Dis; 2022 Jan; 13(1):43. PubMed ID: 35013134
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Karyopherin α deficiency contributes to human preimplantation embryo arrest.
    Wang W; Miyamoto Y; Chen B; Shi J; Diao F; Zheng W; Li Q; Yu L; Li L; Xu Y; Wu L; Mao X; Fu J; Li B; Yan Z; Shi R; Xue X; Mu J; Zhang Z; Wu T; Zhao L; Wang W; Zhou Z; Dong J; Li Q; Jin L; He L; Sun X; Lin G; Kuang Y; Wang L; Sang Q
    J Clin Invest; 2023 Jan; 133(2):. PubMed ID: 36647821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioinformatics analyses of potential ACLF biological mechanisms and identification of immune-related hub genes and vital miRNAs.
    Liang J; Wei X; Hou W; Wang H; Zhang Q; Gao Y; Du Y
    Sci Rep; 2022 Aug; 12(1):14052. PubMed ID: 35982134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Downregulation of circ_0000673 Promotes Cell Proliferation and Migration in Endometriosis via the Mir-616-3p/PTEN Axis.
    Yang Y; Ban D; Zhang C; Shen L
    Int J Med Sci; 2021; 18(15):3506-3515. PubMed ID: 34522177
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ribosomal L1 domain-containing protein 1 coordinates with HDM2 to negatively regulate p53 in human colorectal Cancer cells.
    Ding L; Zhang Z; Zhao C; Chen L; Chen Z; Zhang J; Liu Y; Nie Y; He Y; Liao K; Zhang X
    J Exp Clin Cancer Res; 2021 Aug; 40(1):245. PubMed ID: 34362424
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteome Analysis in PAM Cells Reveals That African Swine Fever Virus Can Regulate the Level of Intracellular Polyamines to Facilitate Its Own Replication through ARG1.
    Ai Q; Lin X; Xie H; Li B; Liao M; Fan H
    Viruses; 2021 Jun; 13(7):. PubMed ID: 34206713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Cellular Senescence-Inhibited Gene Is Essential for PPM1A Myristoylation To Modulate Transforming Growth Factor β Signaling.
    Zhu F; Xie N; Jiang Z; Li G; Ma L; Tong T
    Mol Cell Biol; 2018 Dec; 38(23):. PubMed ID: 30201805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of the MDM2-p53 pathway by the nucleolar protein CSIG in response to nucleolar stress.
    Xie N; Ma L; Zhu F; Zhao W; Tian F; Yuan F; Fu J; Huang D; Lv C; Tong T
    Sci Rep; 2016 Nov; 6():36171. PubMed ID: 27811966
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CSIG inhibits PTEN translation in replicative senescence.
    Ma L; Chang N; Guo S; Li Q; Zhang Z; Wang W; Tong T
    Mol Cell Biol; 2008 Oct; 28(20):6290-301. PubMed ID: 18678645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence.
    Ma L; Zhao W; Zhu F; Yuan F; Xie N; Li T; Wang P; Tong T
    Front Endocrinol (Lausanne); 2015; 6():69. PubMed ID: 26029164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CSIG promotes hepatocellular carcinoma proliferation by activating c-MYC expression.
    Cheng Q; Yuan F; Lu F; Zhang B; Chen T; Chen X; Cheng Y; Li N; Ma L; Tong T
    Oncotarget; 2015 Mar; 6(7):4733-44. PubMed ID: 25749381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Advance research on cellular senescence-inhibited gene (CSIG)].
    Zhao WT; Ma LW; Tong TJ
    Sheng Li Ke Xue Jin Zhan; 2012 Aug; 43(4):291-3. PubMed ID: 23189626
    [No Abstract]   [Full Text] [Related]  

  • 57. Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence.
    Ma L; Zhao W; Zheng Q; Chen T; Qi J; Li G; Tong T
    Biochem Biophys Res Commun; 2016 Jan; 469(3):593-8. PubMed ID: 26686419
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.