BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 26686515)

  • 1. Lactic acid bacteria as a cell factory for riboflavin production.
    Thakur K; Tomar SK; De S
    Microb Biotechnol; 2016 Jul; 9(4):441-51. PubMed ID: 26686515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent update on lactic acid bacteria producing riboflavin and folates: application for food fortification and treatment of intestinal inflammation.
    Levit R; Savoy de Giori G; de Moreno de LeBlanc A; LeBlanc JG
    J Appl Microbiol; 2021 May; 130(5):1412-1424. PubMed ID: 32955761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications.
    LeBlanc JG; Laiño JE; del Valle MJ; Vannini V; van Sinderen D; Taranto MP; de Valdez GF; de Giori GS; Sesma F
    J Appl Microbiol; 2011 Dec; 111(6):1297-309. PubMed ID: 21933312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial production of lactic acid.
    Eiteman MA; Ramalingam S
    Biotechnol Lett; 2015 May; 37(5):955-72. PubMed ID: 25604523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases.
    LeBlanc JG; Levit R; Savoy de Giori G; de Moreno de LeBlanc A
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3331-3337. PubMed ID: 32112134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of Riboflavin Overproducing Strains of Lactic Acid Bacteria and Riboflavin Direct Quantification by Fluorescence.
    Russo P; De Simone N; Capozzi V; Mohedano ML; Ruiz-Masó JÁ; Del Solar G; López P; Spano G
    Methods Mol Biol; 2021; 2280():3-14. PubMed ID: 33751425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering as a tool for enhanced lactic acid production.
    Upadhyaya BP; DeVeaux LC; Christopher LP
    Trends Biotechnol; 2014 Dec; 32(12):637-44. PubMed ID: 25457813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid bacteria: from starter cultures to producers of chemicals.
    Hatti-Kaul R; Chen L; Dishisha T; Enshasy HE
    FEMS Microbiol Lett; 2018 Oct; 365(20):. PubMed ID: 30169778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotechnology of riboflavin.
    Schwechheimer SK; Park EY; Revuelta JL; Becker J; Wittmann C
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2107-19. PubMed ID: 26758294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteria as vitamin suppliers to their host: a gut microbiota perspective.
    LeBlanc JG; Milani C; de Giori GS; Sesma F; van Sinderen D; Ventura M
    Curr Opin Biotechnol; 2013 Apr; 24(2):160-8. PubMed ID: 22940212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial vitamin B2, B11 and B12 overproduction: An overview.
    Burgess CM; Smid EJ; van Sinderen D
    Int J Food Microbiol; 2009 Jul; 133(1-2):1-7. PubMed ID: 19467724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic Acid Bacteria from Andean Grain Amaranth: A Source of Vitamins and Functional Value Enzymes.
    Carrizo SL; Montes de Oca CE; Hébert ME; Saavedra L; Vignolo G; LeBlanc JG; Rollán GC
    J Mol Microbiol Biotechnol; 2017; 27(5):289-298. PubMed ID: 29166640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains.
    Yépez A; Russo P; Spano G; Khomenko I; Biasioli F; Capozzi V; Aznar R
    Food Microbiol; 2019 Feb; 77():61-68. PubMed ID: 30297057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins.
    Li P; Zhou Q; Gu Q
    J Biotechnol; 2016 Sep; 234():66-70. PubMed ID: 27480344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial cell factories for the sustainable manufacturing of B vitamins.
    Acevedo-Rocha CG; Gronenberg LS; Mack M; Commichau FM; Genee HJ
    Curr Opin Biotechnol; 2019 Apr; 56():18-29. PubMed ID: 30138794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of D-lactic acid from lignocellulosic biomass.
    Zhang Y; Yoshida M; Vadlani PV
    Biotechnol Lett; 2018 Aug; 40(8):1167-1179. PubMed ID: 29956044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological and in situ food production of polyols by lactic acid bacteria.
    Ortiz ME; Bleckwedel J; Raya RR; Mozzi F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4713-26. PubMed ID: 23604535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats.
    LeBlanc JG; Burgess C; Sesma F; Savoy de Giori G; van Sinderen D
    J Dairy Sci; 2005 Oct; 88(10):3435-42. PubMed ID: 16162516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.
    Monedero V; Pérez-Martínez G; Yebra MJ
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1003-15. PubMed ID: 20180114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.
    Stahmann KP; Revuelta JL; Seulberger H
    Appl Microbiol Biotechnol; 2000 May; 53(5):509-16. PubMed ID: 10855708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.