These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26686559)

  • 41. Isolation and characterization of therapeutic antibody charge variants using cation exchange displacement chromatography.
    Zhang T; Bourret J; Cano T
    J Chromatogr A; 2011 Aug; 1218(31):5079-86. PubMed ID: 21700290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-line buffer exchange in the coupling of Protein A chromatography with weak cation exchange chromatography for the determination of charge variants of immunoglobulin G derived from chinese hamster ovary cell cultures.
    Wysor SK; Synoground BF; Harcum SW; Marcus RK
    J Chromatogr A; 2024 Mar; 1718():464722. PubMed ID: 38359690
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In-depth size and charge variants characterization of monoclonal antibody with native mass spectrometry.
    Dai J; Ji C
    Anal Chim Acta; 2023 Jul; 1265():341360. PubMed ID: 37230578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns.
    Talebi M; Nordborg A; Gaspar A; Lacher NA; Wang Q; He XZ; Haddad PR; Hilder EF
    J Chromatogr A; 2013 Nov; 1317():148-54. PubMed ID: 24011724
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermodynamic modeling of protein retention in mixed-mode chromatography: An extended model for isocratic and dual gradient elution chromatography.
    Lee YF; Graalfs H; Frech C
    J Chromatogr A; 2016 Sep; 1464():87-101. PubMed ID: 27554024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model.
    Wittkopp F; Peeck L; Hafner M; Frech C
    J Chromatogr A; 2018 Apr; 1545():32-47. PubMed ID: 29525127
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of linker-drug on ion exchange chromatography separation of antibody-drug conjugates.
    Zhang Z; Zhou S; Han L; Zhang Q; Pritts WA
    MAbs; 2019; 11(6):1113-1121. PubMed ID: 31238787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A multiscale modeling method for therapeutic antibodies in ion exchange chromatography.
    Saleh D; Hess R; Ahlers-Hesse M; Rischawy F; Wang G; Grosch JH; Schwab T; Kluters S; Studts J; Hubbuch J
    Biotechnol Bioeng; 2023 Jan; 120(1):125-138. PubMed ID: 36226467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust mechanistic modeling of protein ion-exchange chromatography.
    Kumar V; Leweke S; Heymann W; von Lieres E; Schlegel F; Westerberg K; Lenhoff AM
    J Chromatogr A; 2021 Dec; 1660():462669. PubMed ID: 34800897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Straightforward method for calibration of mechanistic cation exchange chromatography models for industrial applications.
    Saleh D; Wang G; Müller B; Rischawy F; Kluters S; Studts J; Hubbuch J
    Biotechnol Prog; 2020 Jul; 36(4):e2984. PubMed ID: 32087049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparative weak cation-exchange chromatography of monoclonal antibody variants I. Single-component adsorption.
    Melter L; Butté A; Morbidelli M
    J Chromatogr A; 2008 Jul; 1200(2):156-65. PubMed ID: 18565531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange chromatography.
    Saleh D; Hess R; Ahlers-Hesse M; Beckert N; Schönberger M; Rischawy F; Wang G; Bauer J; Blech M; Kluters S; Studts J; Hubbuch J
    Biotechnol Bioeng; 2021 Aug; 118(8):2923-2933. PubMed ID: 33871060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Model-based prediction of monoclonal antibody retention in ion-exchange chromatography.
    Guélat B; Delegrange L; Valax P; Morbidelli M
    J Chromatogr A; 2013 Jul; 1298():17-25. PubMed ID: 23759301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-stage chromatographic separation of aggregates for monoclonal antibody therapeutics.
    Kumar V; Rathore AS
    J Chromatogr A; 2014 Nov; 1368():155-62. PubMed ID: 25441350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior.
    Guo J; Zhang S; Carta G
    J Chromatogr A; 2014 Aug; 1356():117-28. PubMed ID: 25015241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.
    Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD
    J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 1: Alternative mobile phases and fine tuning of the separation.
    Farsang E; Murisier A; Horváth K; Beck A; Kormány R; Guillarme D; Fekete S
    J Pharm Biomed Anal; 2019 May; 168():138-147. PubMed ID: 30807918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Model based process optimization of an industrial chromatographic process for separation of lactoferrin from bovine milk.
    Gerstweiler L; Schad P; Trunzer T; Enghauser L; Mayr M; Billakanti J
    J Chromatogr A; 2023 Nov; 1710():464428. PubMed ID: 37797420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 2: Evaluation of recent stationary phases.
    Murisier A; Farsang E; Horváth K; Lauber M; Beck A; Guillarme D; Fekete S
    J Pharm Biomed Anal; 2019 Aug; 172():320-328. PubMed ID: 31085394
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of the Steric Mass Action formalism for modeling under high loading conditions: Part 1. Investigation of the influence of pH on the steric shielding factor.
    Seelinger F; Wittkopp F; von Hirschheydt T; Hafner M; Frech C
    J Chromatogr A; 2022 Aug; 1676():463265. PubMed ID: 35779394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.