BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26686627)

  • 1. Controlling the Cyanobacterial Clock by Synthetically Rewiring Metabolism.
    Pattanayak GK; Lambert G; Bernat K; Rust MJ
    Cell Rep; 2015 Dec; 13(11):2362-2367. PubMed ID: 26686627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA.
    Welkie DG; Rubin BE; Chang YG; Diamond S; Rifkin SA; LiWang A; Golden SS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7174-E7183. PubMed ID: 29991601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cyanobacterial circadian clock follows midday in vivo and in vitro.
    Leypunskiy E; Lin J; Yoo H; Lee U; Dinner AR; Rust MJ
    Elife; 2017 Jul; 6():. PubMed ID: 28686160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock-controlled gene expression in co-cultured, mat-forming cyanobacteria.
    Hörnlein C; Confurius-Guns V; Grego M; Stal LJ; Bolhuis H
    Sci Rep; 2020 Aug; 10(1):14095. PubMed ID: 32839512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A
    Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA.
    Diamond S; Rubin BE; Shultzaberger RK; Chen Y; Barber CD; Golden SS
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):E580-E589. PubMed ID: 28074036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cyanobacterial clock and metabolism.
    Pattanayak G; Rust MJ
    Curr Opin Microbiol; 2014 Apr; 18():90-5. PubMed ID: 24667330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.
    Kumar Jha P; Challet E; Kalsbeek A
    Mol Cell Endocrinol; 2015 Dec; 418 Pt 1():74-88. PubMed ID: 25662277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing the day: what makes bacterial clocks tick?
    Johnson CH; Zhao C; Xu Y; Mori T
    Nat Rev Microbiol; 2017 Apr; 15(4):232-242. PubMed ID: 28216658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria.
    Bandyopadhyay A; Sengupta A; Elvitigala T; Pakrasi HB
    Nat Commun; 2024 May; 15(1):3712. PubMed ID: 38697963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inner workings of an ancient biological clock.
    Fang M; LiWang A; Golden SS; Partch CL
    Trends Biochem Sci; 2024 Mar; 49(3):236-246. PubMed ID: 38185606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness of Clocks to Input Noise.
    Monti M; Lubensky DK; Ten Wolde PR
    Phys Rev Lett; 2018 Aug; 121(7):078101. PubMed ID: 30169070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, function, and mechanism of the core circadian clock in cyanobacteria.
    Swan JA; Golden SS; LiWang A; Partch CL
    J Biol Chem; 2018 Apr; 293(14):5026-5034. PubMed ID: 29440392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The recovery of KaiA's activity depends on its N-terminal domain and KaiB in the cyanobacterial circadian clock.
    Li J; Huang Y; Su Z; Liu S
    Biochem Biophys Res Commun; 2020 Mar; 524(1):123-128. PubMed ID: 31980172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation.
    Murayama Y; Kori H; Oshima C; Kondo T; Iwasaki H; Ito H
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5641-5646. PubMed ID: 28515313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of the dimeric and tetrameric structures of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria.
    Murakami R; Mutoh R; Iwase R; Furukawa Y; Imada K; Onai K; Morishita M; Yasui S; Ishii K; Valencia Swain JO; Uzumaki T; Namba K; Ishiura M
    J Biol Chem; 2012 Aug; 287(35):29506-15. PubMed ID: 22722936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocols for in vitro reconstitution of the cyanobacterial circadian clock.
    Chavan A; Heisler J; Chang YG; Golden SS; Partch CL; LiWang A
    Biopolymers; 2024 Mar; 115(2):e23559. PubMed ID: 37421636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian clock network desynchrony promotes weight gain and alters glucose homeostasis in mice.
    Kolbe I; Leinweber B; Brandenburger M; Oster H
    Mol Metab; 2019 Dec; 30():140-151. PubMed ID: 31767165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
    Ivleva NB; Gao T; LiWang AC; Golden SS
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17468-73. PubMed ID: 17088557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythms in energy storage control the ability of the cyanobacterial circadian clock to reset.
    Pattanayak GK; Phong C; Rust MJ
    Curr Biol; 2014 Aug; 24(16):1934-8. PubMed ID: 25127221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.