These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26686703)

  • 1. Reproductive technologies combine well with genomic selection in dairy breeding programs.
    Thomasen JR; Willam A; Egger-Danner C; Sørensen AC
    J Dairy Sci; 2016 Feb; 99(2):1331-1340. PubMed ID: 26686703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit.
    Thomasen JR; Egger-Danner C; Willam A; Guldbrandtsen B; Lund MS; Sørensen AC
    J Dairy Sci; 2014; 97(1):458-70. PubMed ID: 24239076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding cows to the reference population makes a small dairy population competitive.
    Thomasen JR; Sørensen AC; Lund MS; Guldbrandtsen B
    J Dairy Sci; 2014 Sep; 97(9):5822-32. PubMed ID: 24996280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breeding schemes with optimum-contribution selection or truncation selection for beef cattle destined for use on dairy females.
    Hjortø L; Andersen T; Kargo M; Sørensen AC
    J Dairy Sci; 2022 May; 105(5):4314-4323. PubMed ID: 35307183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic models of breeding scheme designs that incorporate genomic selection.
    Pryce JE; Goddard ME; Raadsma HW; Hayes BJ
    J Dairy Sci; 2010 Nov; 93(11):5455-66. PubMed ID: 20965361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection.
    Granleese T; Clark SA; Kinghorn BP; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):79-90. PubMed ID: 30585664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic selection strategies in dairy cattle breeding programmes: Sexed semen cannot replace multiple ovulation and embryo transfer as superior reproductive technology.
    Pedersen LD; Kargo M; Berg P; Voergaard J; Buch LH; Sørensen AC
    J Anim Breed Genet; 2012 Apr; 129(2):152-63. PubMed ID: 22394237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating genomic selection into dairy cattle breeding programmes: a review.
    Bouquet A; Juga J
    Animal; 2013 May; 7(5):705-13. PubMed ID: 23200196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of female information in dairy cattle genomic breeding programs.
    Mc Hugh N; Meuwissen TH; Cromie AR; Sonesson AK
    J Dairy Sci; 2011 Aug; 94(8):4109-18. PubMed ID: 21787946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of dairy cattle breeding designs that use genomic selection.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Dairy Sci; 2011 Jan; 94(1):493-500. PubMed ID: 21183061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation study on the efficiencies of MOET nucleus breeding schemes applying marker assisted selection in dairy cattle.
    Luo W; Wang Y; Zhang Y
    Sci China C Life Sci; 2009 Mar; 52(3):296-306. PubMed ID: 19294355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic testing interacts with reproductive surplus in reducing genetic lag and increasing economic net return.
    Hjortø L; Ettema JF; Kargo M; Sørensen AC
    J Dairy Sci; 2015 Jan; 98(1):646-58. PubMed ID: 25465627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential gains in lifetime net merit from genomic testing of cows, heifers, and calves on commercial dairy farms.
    Weigel KA; Hoffman PC; Herring W; Lawlor TJ
    J Dairy Sci; 2012 Apr; 95(4):2215-25. PubMed ID: 22459867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the design of small-sized nucleus breeding programs for dairy cattle with minimal performance recording.
    Kariuki CM; Komen H; Kahi AK; van Arendonk JA
    J Dairy Sci; 2014 Dec; 97(12):7963-74. PubMed ID: 25282422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes.
    Spelman RJ; Garrick DJ
    J Dairy Sci; 1998 Nov; 81(11):2942-50. PubMed ID: 9839238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.