These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26686761)

  • 1. Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.
    Goker A; Aksu H
    Phys Chem Chem Phys; 2016 Jan; 18(3):1980-91. PubMed ID: 26686761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly correlated plexcitonics: evolution of the Fano resonance in the presence of Kondo correlations.
    Goker A
    Phys Chem Chem Phys; 2015 May; 17(17):11569-76. PubMed ID: 25858207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum plexcitonics: strongly interacting plasmons and excitons.
    Manjavacas A; García de Abajo FJ; Nordlander P
    Nano Lett; 2011 Jun; 11(6):2318-23. PubMed ID: 21534592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.
    Marinica DC; Lourenço-Martins H; Aizpurua J; Borisov AG
    Nano Lett; 2013; 13(12):5972-8. PubMed ID: 24206447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays.
    Liu J; Wang W; Wang D; Hu J; Ding W; Schaller RD; Schatz GC; Odom TW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5925-5930. PubMed ID: 30850522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 May; 23(20):205203. PubMed ID: 22543983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional energy transport in strongly coupled chiral quantum emitter plasmonic nanostructures.
    Gettapola K; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34425568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
    Li Q; Wei H; Xu H
    Nano Lett; 2015 Dec; 15(12):8181-7. PubMed ID: 26583200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Exciton-Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture.
    Babaze A; Esteban R; Borisov AG; Aizpurua J
    Nano Lett; 2021 Oct; 21(19):8466-8473. PubMed ID: 34529442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-crossing property of strong coupling system of silver nanoparticle dimers coated with thin dye molecular films analyzed by electromagnetism.
    Itoh T; Yamamoto YS; Okamoto T
    J Chem Phys; 2020 Feb; 152(5):054710. PubMed ID: 32035435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films.
    Estrin Y; Rich DH; Keller S; DenBaars SP
    J Phys Condens Matter; 2015 Jul; 27(26):265802. PubMed ID: 26076324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton-Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime.
    Shahbazyan TV
    Nano Lett; 2019 May; 19(5):3273-3279. PubMed ID: 30973738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle.
    Li JY; Li W; Liu J; Zhong J; Liu R; Chen H; Wang XH
    Nano Lett; 2022 Jun; 22(12):4686-4693. PubMed ID: 35638870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation.
    Rodriguez SR; Feist J; Verschuuren MA; Garcia Vidal FJ; Gómez Rivas J
    Phys Rev Lett; 2013 Oct; 111(16):166802. PubMed ID: 24182291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kondo effect in a quantum antidot.
    Kataoka M; Ford CJ; Simmons MY; Ritchie DA
    Phys Rev Lett; 2002 Nov; 89(22):226803. PubMed ID: 12485092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.