These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26686761)

  • 21. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum phase transition and underscreened Kondo effect in electron transport through parallel double quantum dots.
    Ding GH; Ye F; Dong B
    J Phys Condens Matter; 2009 Nov; 21(45):455303. PubMed ID: 21694008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
    Ardelt PL; Gawarecki K; Müller K; Waeber AM; Bechtold A; Oberhofer K; Daniels JM; Klotz F; Bichler M; Kuhn T; Krenner HJ; Machnikowski P; Finley JJ
    Phys Rev Lett; 2016 Feb; 116(7):077401. PubMed ID: 26943557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency-dependent transport through a quantum dot in the Kondo regime.
    Sindel M; Hofstetter W; von Delft J; Kindermann M
    Phys Rev Lett; 2005 May; 94(19):196602. PubMed ID: 16090194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong coupling between monolayer quantum emitter WS
    Lv F; Wang Z; Huang Y; Chen J; La J; Wu D; Guo Z; Liu Y; Zhang Y; Wang Y; Wang W
    Opt Lett; 2022 Jan; 47(1):190-193. PubMed ID: 34951914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition.
    Rodriguez SR; Rivas JG
    Opt Express; 2013 Nov; 21(22):27411-21. PubMed ID: 24216963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.
    Gettapola K; Hapuarachchi H; Stockman MI; Premaratne M
    J Phys Condens Matter; 2020 Mar; 32(12):125301. PubMed ID: 31770745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots.
    Park Y; Pravitasari A; Raymond JE; Batteas JD; Son DH
    ACS Nano; 2013 Dec; 7(12):10544-51. PubMed ID: 24215453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum plasmons and intraband excitons in doped nanoparticles: Insights from quantum chemistry.
    Lau BTG; Berkelbach TC
    J Chem Phys; 2020 Jun; 152(22):224704. PubMed ID: 32534544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of single quantum emitter and dark plasmon supported by a metal nanoring.
    Deinega A; Seideman T
    J Chem Phys; 2014 Jun; 140(23):234311. PubMed ID: 24952545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.
    Kim NC; Ko MC; Choe SI; Hao ZH; Zhou L; Li JB; Im SJ; Ko YH; Jo CG; Wang QQ
    Nanotechnology; 2016 Nov; 27(46):465703. PubMed ID: 27749280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strongly Coupled Exciton-Surface Lattice Resonances Engineer Long-Range Energy Propagation.
    Yadav RK; Otten M; Wang W; Cortes CL; Gosztola DJ; Wiederrecht GP; Gray SK; Odom TW; Basu JK
    Nano Lett; 2020 Jul; 20(7):5043-5049. PubMed ID: 32470309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.
    Neuman T; Esteban R; Casanova D; García-Vidal FJ; Aizpurua J
    Nano Lett; 2018 Apr; 18(4):2358-2364. PubMed ID: 29522686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures.
    Vasa P; Pomraenke R; Schwieger S; Mazur YI; Kunets V; Srinivasan P; Johnson E; Kihm JE; Kim DS; Runge E; Salamo G; Lienau C
    Phys Rev Lett; 2008 Sep; 101(11):116801. PubMed ID: 18851308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kondo effect in a few-electron quantum ring.
    Keyser UF; Fühner C; Borck S; Haug RJ; Bichler M; Abstreiter G; Wegscheider W
    Phys Rev Lett; 2003 May; 90(19):196601. PubMed ID: 12785965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exciton Formation and Quenching in a Au/CdS Core/Shell Nanostructure.
    Ziemannn D; May V
    J Phys Chem Lett; 2015 Oct; 6(20):4054-60. PubMed ID: 26722776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.