These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26686761)

  • 41. Cooperative Energy Transfer Controls the Spontaneous Emission Rate Beyond Field Enhancement Limits.
    ElKabbash M; Miele E; Fumani AK; Wolf MS; Bozzola A; Haber E; Shahbazyan TV; Berezovsky J; De Angelis F; Strangi G
    Phys Rev Lett; 2019 May; 122(20):203901. PubMed ID: 31172774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An asymmetric aluminum active quantum plasmonic device.
    Mokkath JH; Henzie J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1416-1421. PubMed ID: 31859295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shot noise through a quantum dot in the Kondo regime.
    Meir Y; Golub A
    Phys Rev Lett; 2002 Mar; 88(11):116802. PubMed ID: 11909419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmon blockade in nanostructured graphene.
    Manjavacas A; Nordlander P; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1724-31. PubMed ID: 22224435
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Discrete Interaction Model/Quantum Mechanical Method for Simulating Plasmon-Enhanced Two-Photon Absorption.
    Hu Z; Jensen L
    J Chem Theory Comput; 2018 Nov; 14(11):5896-5903. PubMed ID: 30351932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions.
    Yang ZJ; Antosiewicz TJ; Shegai T
    Opt Express; 2016 Sep; 24(18):20373-81. PubMed ID: 27607644
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array.
    Zaster S; Bittner ER; Piryatinski A
    J Phys Chem A; 2016 May; 120(19):3109-16. PubMed ID: 26905014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.
    Badalyan SM; Shylau AA; Jauho AP
    Phys Rev Lett; 2017 Sep; 119(12):126801. PubMed ID: 29341655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gate-tunable split Kondo effect in a carbon nanotube quantum dot.
    Eichler A; Weiss M; Schönenberger C
    Nanotechnology; 2011 Jul; 22(26):265204. PubMed ID: 21576773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transient electron dynamics in a vibrating quantum dot in the Kondo regime.
    Goker A
    J Phys Condens Matter; 2011 Mar; 23(12):125302. PubMed ID: 21386369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multichannel Topological Kondo Effect.
    Li G; Oreg Y; Väyrynen JI
    Phys Rev Lett; 2023 Feb; 130(6):066302. PubMed ID: 36827579
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multipeak Kondo effect in one- and two-electron quantum dots.
    Vidan A; Stopa M; Westervelt RM; Hanson M; Gossard AC
    Phys Rev Lett; 2006 Apr; 96(15):156802. PubMed ID: 16712183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.
    Yu Z; Chen J; Zhang L; Wang J
    J Phys Condens Matter; 2013 Dec; 25(49):495302. PubMed ID: 24214776
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport.
    Song P; Nordlander P; Gao S
    J Chem Phys; 2011 Feb; 134(7):074701. PubMed ID: 21341863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective.
    Zhang W; You JB; Liu J; Xiong X; Li Z; Png CE; Wu L; Qiu CW; Zhou ZK
    Nano Lett; 2021 Nov; 21(21):8979-8986. PubMed ID: 34644095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle.
    Varguet H; Rousseaux B; Dzsotjan D; Jauslin HR; Guérin S; Colas des Francs G
    Opt Lett; 2016 Oct; 41(19):4480-4483. PubMed ID: 27749860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters.
    Park HI; Lee S; Lee JM; Nam SA; Jeon T; Han SW; Kim SO
    ACS Nano; 2014 Oct; 8(10):10305-12. PubMed ID: 25299878
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine.
    Zhang Z; Wang J
    J Phys Chem B; 2015 Apr; 119(13):4662-7. PubMed ID: 25776946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.