These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 26686985)
1. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985 [TBL] [Abstract][Full Text] [Related]
2. Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Kang A; Seo HI; Chung BG; Lee SH Nanomedicine; 2015 Jul; 11(5):1153-61. PubMed ID: 25752856 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. Sabhachandani P; Sarkar S; Mckenney S; Ravi D; Evens AM; Konry T J Control Release; 2019 Feb; 295():21-30. PubMed ID: 30550941 [TBL] [Abstract][Full Text] [Related]
4. Microfluidically-generated Encapsulated Spheroids (μ-GELS): An All-Aqueous Droplet Microfluidics Platform for Multicellular Spheroids Generation. Kieda J; Appak-Baskoy S; Jeyhani M; Navi M; Chan KWY; Tsai SSH ACS Biomater Sci Eng; 2023 Feb; 9(2):1043-1052. PubMed ID: 36626575 [TBL] [Abstract][Full Text] [Related]
5. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
6. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array. Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Ruppen J; Cortes-Dericks L; Marconi E; Karoubi G; Schmid RA; Peng R; Marti TM; Guenat OT Lab Chip; 2014 Mar; 14(6):1198-205. PubMed ID: 24496222 [TBL] [Abstract][Full Text] [Related]
8. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Kim C; Bang JH; Kim YE; Lee SH; Kang JY Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534 [TBL] [Abstract][Full Text] [Related]
9. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Gallegos-Martínez S; Choy-Buentello D; Pérez-Álvarez KA; Lara-Mayorga IM; Aceves-Colin AE; Zhang YS; Trujillo-de Santiago G; Álvarez MM Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38866003 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic device for recreating a tumor microenvironment in vitro. Toley BJ; Ganz DE; Walsh CL; Forbes NS J Vis Exp; 2011 Nov; (57):. PubMed ID: 22126742 [TBL] [Abstract][Full Text] [Related]
11. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER Khan AH; Zhou SP; Moe M; Ortega Quesada BA; Bajgiran KR; Lassiter HR; Dorman JA; Martin EC; Pojman JA; Melvin AT ACS Biomater Sci Eng; 2022 Sep; 8(9):3977-3985. PubMed ID: 36001134 [TBL] [Abstract][Full Text] [Related]
12. Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Khot MI; Levenstein MA; de Boer GN; Armstrong G; Maisey T; Svavarsdottir HS; Andrew H; Perry SL; Kapur N; Jayne DG Sci Rep; 2020 Sep; 10(1):15915. PubMed ID: 32985610 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Wu LY; Di Carlo D; Lee LP Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938 [TBL] [Abstract][Full Text] [Related]
14. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
15. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device. LaBonia GJ; Ludwig KR; Mousseau CB; Hummon AB Anal Chem; 2018 Jan; 90(2):1423-1430. PubMed ID: 29227110 [TBL] [Abstract][Full Text] [Related]
17. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102 [TBL] [Abstract][Full Text] [Related]
18. Assessing Advantages and Drawbacks of Rapidly Generated Ultra-Large 3D Breast Cancer Spheroids: Studies with Chemotherapeutics and Nanoparticles. Holub AR; Huo A; Patel K; Thakore V; Chhibber P; Erogbogbo F Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575896 [TBL] [Abstract][Full Text] [Related]
19. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review. Kim S; Lam PY; Jayaraman A; Han A Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765 [TBL] [Abstract][Full Text] [Related]
20. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening. Yu L; Ni C; Grist SM; Bayly C; Cheung KC Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]