These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 26687667)

  • 1. Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks.
    Betzel RF; Fukushima M; He Y; Zuo XN; Sporns O
    Neuroimage; 2016 Feb; 127():287-297. PubMed ID: 26687667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuations between high- and low-modularity topology in time-resolved functional connectivity.
    Fukushima M; Betzel RF; He Y; de Reus MA; van den Heuvel MP; Zuo XN; Sporns O
    Neuroimage; 2018 Oct; 180(Pt B):406-416. PubMed ID: 28823827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks.
    Carbonell F; Nagano-Saito A; Leyton M; Cisek P; Benkelfat C; He Y; Dagher A
    Neuropharmacology; 2014 Sep; 84():90-100. PubMed ID: 24412649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
    Mowinckel AM; Espeseth T; Westlye LT
    Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.
    Gopinath K; Krishnamurthy V; Cabanban R; Crosson BA
    Brain Connect; 2015 Jun; 5(5):267-75. PubMed ID: 25744222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind.
    Stoffers D; Diaz BA; Chen G; den Braber A; van 't Ent D; Boomsma DI; Mansvelder HD; de Geus E; Van Someren EJ; Linkenkaer-Hansen K
    PLoS One; 2015; 10(11):e0142014. PubMed ID: 26540239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS.
    Sasai S; Homae F; Watanabe H; Taga G
    Neuroimage; 2011 May; 56(1):252-7. PubMed ID: 21211570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Brain-Wide Study of Age-Related Changes in Functional Connectivity.
    Geerligs L; Renken RJ; Saliasi E; Maurits NM; Lorist MM
    Cereb Cortex; 2015 Jul; 25(7):1987-99. PubMed ID: 24532319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizations of resting-state modulatory interactions in the human brain.
    Di X; Biswal BB
    J Neurophysiol; 2015 Nov; 114(5):2785-96. PubMed ID: 26334022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the functional and structural connectivity of the Default Mode Network.
    van Oort ES; van Cappellen van Walsum AM; Norris DG
    Neuroimage; 2014 Apr; 90():381-9. PubMed ID: 24382524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques.
    Hutchison RM; Womelsdorf T; Gati JS; Everling S; Menon RS
    Hum Brain Mapp; 2013 Sep; 34(9):2154-77. PubMed ID: 22438275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.
    Sojoudi A; Goodyear BG
    Hum Brain Mapp; 2016 Dec; 37(12):4566-4580. PubMed ID: 27464464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the brain network: a review on resting-state fMRI functional connectivity.
    van den Heuvel MP; Hulshoff Pol HE
    Eur Neuropsychopharmacol; 2010 Aug; 20(8):519-34. PubMed ID: 20471808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2018 May; 171():40-54. PubMed ID: 29294385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.