BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 26687813)

  • 1. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants.
    Ortiz-Ramírez C; Hernandez-Coronado M; Thamm A; Catarino B; Wang M; Dolan L; Feijó JA; Becker JD
    Mol Plant; 2016 Feb; 9(2):205-220. PubMed ID: 26687813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs.
    Frank MH; Scanlon MJ
    Mol Biol Evol; 2015 Feb; 32(2):355-67. PubMed ID: 25371433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte Physcomitrella patens.
    Yokoyama R; Uwagaki Y; Sasaki H; Harada T; Hiwatashi Y; Hasebe M; Nishitani K
    Plant J; 2010 Nov; 64(4):645-56. PubMed ID: 20822502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution.
    Okano Y; Aono N; Hiwatashi Y; Murata T; Nishiyama T; Ishikawa T; Kubo M; Hasebe M
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16321-6. PubMed ID: 19805300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sporophyte Formation and Life Cycle Completion in Moss Requires Heterotrimeric G-Proteins.
    Hackenberg D; Perroud PF; Quatrano R; Pandey S
    Plant Physiol; 2016 Oct; 172(2):1154-1166. PubMed ID: 27550997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.
    Yotsui I; Serada S; Naka T; Saruhashi M; Taji T; Hayashi T; Quatrano RS; Sakata Y
    Biochem Biophys Res Commun; 2016 Mar; 471(4):589-95. PubMed ID: 26869511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.
    Mosquna A; Katz A; Decker EL; Rensing SA; Reski R; Ohad N
    Development; 2009 Jul; 136(14):2433-44. PubMed ID: 19542356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants.
    Demko V; Ako E; Perroud PF; Quatrano R; Olsen OA
    Planta; 2016 Jul; 244(1):275-84. PubMed ID: 27100110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA METHYLTRANSFERASE 1 is involved in (m)CG and (m)CCG DNA methylation and is essential for sporophyte development in Physcomitrella patens.
    Yaari R; Noy-Malka C; Wiedemann G; Auerbach Gershovitz N; Reski R; Katz A; Ohad N
    Plant Mol Biol; 2015 Jul; 88(4-5):387-400. PubMed ID: 25944663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens.
    Yip HK; Floyd SK; Sakakibara K; Bowman JL
    Dev Biol; 2016 Nov; 419(1):184-197. PubMed ID: 26808209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop?
    Holm K; Källman T; Gyllenstrand N; Hedman H; Lagercrantz U
    BMC Plant Biol; 2010 Jun; 10():109. PubMed ID: 20550695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens.
    MacAlister CA; Ortiz-Ramírez C; Becker JD; Feijó JA; Lippman ZB
    Plant J; 2016 Jan; 85(2):193-208. PubMed ID: 26577059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary insights into FYVE and PHOX effector proteins from the moss Physcomitrella patens.
    Agudelo-Romero P; Fortes AM; Suárez T; Lascano HR; Saavedra L
    Planta; 2020 Feb; 251(3):62. PubMed ID: 32040768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary crossroads in developmental biology: Physcomitrella patens.
    Prigge MJ; Bezanilla M
    Development; 2010 Nov; 137(21):3535-43. PubMed ID: 20940223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins.
    Carey RE; Cosgrove DJ
    Ann Bot; 2007 Jun; 99(6):1131-41. PubMed ID: 17416912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants.
    Zobell O; Faigl W; Saedler H; Münster T
    Mol Biol Evol; 2010 May; 27(5):1201-11. PubMed ID: 20080864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens.
    O'Donoghue MT; Chater C; Wallace S; Gray JE; Beerling DJ; Fleming AJ
    J Exp Bot; 2013 Sep; 64(12):3567-81. PubMed ID: 23888066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution.
    Nishiyama T; Fujita T; Shin-I T; Seki M; Nishide H; Uchiyama I; Kamiya A; Carninci P; Hayashizaki Y; Shinozaki K; Kohara Y; Hasebe M
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):8007-12. PubMed ID: 12808149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.