These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26688211)
1. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics. Guo D; Zybin SV; An Q; Goddard WA; Huang F Phys Chem Chem Phys; 2016 Jan; 18(3):2015-22. PubMed ID: 26688211 [TBL] [Abstract][Full Text] [Related]
2. Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics. Zhou T; Zybin SV; Goddard WA; Cheng T; Naserifar S; Jaramillo-Botero A; Huang F Phys Chem Chem Phys; 2018 Feb; 20(6):3953-3969. PubMed ID: 29367992 [TBL] [Abstract][Full Text] [Related]
3. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: microscopic calculation of the Chapman-Jouguet state. Bourasseau E; Dubois V; Desbiens N; Maillet JB J Chem Phys; 2007 Aug; 127(8):084513. PubMed ID: 17764275 [TBL] [Abstract][Full Text] [Related]
4. Influence of interatomic bonding potentials on detonation properties. Heim AJ; Grønbech-Jensen N; Germann TC; Holian BL; Kober EM; Lomdahl PS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026318. PubMed ID: 17930153 [TBL] [Abstract][Full Text] [Related]
5. Increasing Oxygen Balance Leads to Enhanced Performance in Environmentally Acceptable High-Energy Density Materials: Predictions from First-Principles Molecular Dynamics Simulations. Guo D; Zybin SV; Chafin AP; Goddard WA ACS Appl Mater Interfaces; 2022 Feb; 14(4):5257-5264. PubMed ID: 35040628 [TBL] [Abstract][Full Text] [Related]
6. Deep Potential Molecular Dynamics Study of Chapman-Jouguet Detonation Events of Energetic Materials. Zhang J; Guo W; Yao Y J Phys Chem Lett; 2023 Aug; 14(32):7141-7148. PubMed ID: 37535980 [TBL] [Abstract][Full Text] [Related]
7. Detonation Performance of Insensitive Nitrogen-Rich Nitroenamine Energetic Materials Predicted from First-Principles Reactive Molecular Dynamics Simulations. Guo D; Wei Y; Zybin SV; Liu Y; Huang F; Goddard WA JACS Au; 2024 Apr; 4(4):1605-1614. PubMed ID: 38665641 [TBL] [Abstract][Full Text] [Related]
9. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
10. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure. Keshavarz MH J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709 [TBL] [Abstract][Full Text] [Related]
11. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion. Cheng T; Jaramillo-Botero A; Goddard WA; Sun H J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152 [TBL] [Abstract][Full Text] [Related]
12. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives. Keshavarz MH J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789 [TBL] [Abstract][Full Text] [Related]
13. Complete equations of state for PETN and its products from atomistic simulations. Sergeev OV; Mukhanov AE; Murzov SA; Yanilkin AV Phys Chem Chem Phys; 2020 Dec; 22(47):27572-27580. PubMed ID: 33236737 [TBL] [Abstract][Full Text] [Related]
14. First-principles-based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition. Ilyin DV; Goddard WA; Oppenheim JJ; Cheng T Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18202-18208. PubMed ID: 30242137 [TBL] [Abstract][Full Text] [Related]
15. Development and application of a ReaxFF reactive force field for hydrogen combustion. Agrawalla S; van Duin AC J Phys Chem A; 2011 Feb; 115(6):960-72. PubMed ID: 21261320 [TBL] [Abstract][Full Text] [Related]
16. Numerical prediction of steady-state detonation properties of condensed-phase explosives. Cengiz F; Ulas A J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772 [TBL] [Abstract][Full Text] [Related]
17. Microscopic simulations of supersonic and subsonic exothermic chemical wave fronts and transition to detonation. Lemarchand A; Nowakowski B; Dumazer G; Antoine C J Chem Phys; 2011 Jan; 134(3):034121. PubMed ID: 21261344 [TBL] [Abstract][Full Text] [Related]
19. Thermal Stability and Detonation Properties of Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate, an Environmentally Friendly Energetic Three-Dimensional Metal-Organic Framework. Guo D; An Q ACS Appl Mater Interfaces; 2019 Jan; 11(1):1512-1519. PubMed ID: 30525412 [TBL] [Abstract][Full Text] [Related]
20. Influence of discrete sources on detonation propagation in a Burgers equation analog system. Mi X; Higgins AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053014. PubMed ID: 26066256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]