These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 26688251)
21. Surfactant effects on skin absorption of model organic chemicals: implications for dermal risk assessment studies. Riviere JE; Brooks JD; Yeatts JL; Koivisto EL J Toxicol Environ Health A; 2010; 73(11):725-37. PubMed ID: 20391115 [TBL] [Abstract][Full Text] [Related]
22. Reassessment of the experimental skin permeability coefficients of polycyclic aromatic hydrocarbons and organophosphorus pesticides. Silva J; Marques-da-Silva D; Lagoa R Environ Toxicol Pharmacol; 2021 Aug; 86():103671. PubMed ID: 33979686 [TBL] [Abstract][Full Text] [Related]
23. Human skin penetration of selected model mycotoxins. Boonen J; Malysheva SV; Taevernier L; Diana Di Mavungu J; De Saeger S; De Spiegeleer B Toxicology; 2012 Nov; 301(1-3):21-32. PubMed ID: 22749975 [TBL] [Abstract][Full Text] [Related]
24. Effect of vehicles and sodium lauryl sulphate on xenobiotic permeability and stratum corneum partitioning in porcine skin. van der Merwe D; Riviere JE Toxicology; 2005 Jan; 206(3):325-35. PubMed ID: 15588923 [TBL] [Abstract][Full Text] [Related]
25. A physiologically based pharmacokinetic model of organophosphate dermal absorption. van der Merwe D; Brooks JD; Gehring R; Baynes RE; Monteiro-Riviere NA; Riviere JE Toxicol Sci; 2006 Jan; 89(1):188-204. PubMed ID: 16221965 [TBL] [Abstract][Full Text] [Related]
26. Assessment of an extended dataset of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption. Aggarwal M; Fisher P; Hüser A; Kluxen FM; Parr-Dobrzanski R; Soufi M; Strupp C; Wiemann C; Billington R Regul Toxicol Pharmacol; 2015 Jun; 72(1):58-70. PubMed ID: 25765508 [TBL] [Abstract][Full Text] [Related]
28. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application. Gong M; Zhang Y; Weschler CJ Indoor Air; 2014 Jun; 24(3):292-306. PubMed ID: 24245588 [TBL] [Abstract][Full Text] [Related]
29. Comparative analysis of passive dosimetry and biomonitoring for assessing chlorpyrifos exposure in pesticide workers. Geer LA; Cardello N; Dellarco MJ; Leighton TJ; Zendzian RP; Roberts JD; Buckley TJ Ann Occup Hyg; 2004 Nov; 48(8):683-95. PubMed ID: 15516344 [TBL] [Abstract][Full Text] [Related]
30. New in vitro dermal absorption database and the prediction of dermal absorption under finite conditions for risk assessment purposes. Buist HE; van Burgsteden JA; Freidig AP; Maas WJ; van de Sandt JJ Regul Toxicol Pharmacol; 2010; 57(2-3):200-9. PubMed ID: 20178823 [TBL] [Abstract][Full Text] [Related]
31. Dermal absorption of chemicals: estimation by IH SkinPerm. Tibaldi R; ten Berge W; Drolet D J Occup Environ Hyg; 2014; 11(1):19-31. PubMed ID: 24283333 [TBL] [Abstract][Full Text] [Related]
32. Estimating terrestrial amphibian pesticide body burden through dermal exposure. Van Meter RJ; Glinski DA; Hong T; Cyterski M; Henderson WM; Purucker ST Environ Pollut; 2014 Oct; 193():262-268. PubMed ID: 25063914 [TBL] [Abstract][Full Text] [Related]
33. Predicting vehicle effects on the dermal absorption of halogenated methanes using physiologically based modeling. Jepson GW; McDougal JN Toxicol Sci; 1999 Apr; 48(2):180-8. PubMed ID: 10353309 [TBL] [Abstract][Full Text] [Related]
34. Insights into reptile dermal contaminant exposure: Reptile skin permeability to pesticides. Weir SM; Talent LG; Anderson TA; Salice CJ Chemosphere; 2016 Jul; 154():17-22. PubMed ID: 27037770 [TBL] [Abstract][Full Text] [Related]
35. Assessment of hazards to workers applying pesticides. Carmichael NG Food Addit Contam; 1989; 6 Suppl 1():S21-7. PubMed ID: 2599152 [TBL] [Abstract][Full Text] [Related]
36. From dermal exposure to internal dose. Van de Sandt JJ; Dellarco M; Van Hemmen JJ J Expo Sci Environ Epidemiol; 2007 Dec; 17 Suppl 1():S38-47. PubMed ID: 17440485 [TBL] [Abstract][Full Text] [Related]
37. Comparative evaluation of absorbed dose estimates derived from passive dosimetry measurements to those derived from biological monitoring: validation of exposure monitoring methodologies. Ross J; Chester G; Driver J; Lunchick C; Holden L; Rosenheck L; Barnekow D J Expo Sci Environ Epidemiol; 2008 Mar; 18(2):211-30. PubMed ID: 17593947 [TBL] [Abstract][Full Text] [Related]
38. The usual suspects-influence of physicochemical properties on lag time, skin deposition, and percutaneous penetration of nine model compounds. Bo Nielsen J; Ahm Sørensen J; Nielsen F J Toxicol Environ Health A; 2009; 72(5):315-23. PubMed ID: 19184747 [TBL] [Abstract][Full Text] [Related]
39. A Web-based Tool to Aid the Identification of Chemicals Potentially Posing a Health Risk through Percutaneous Exposure. Gorman Ng M; Milon A; Vernez D; Lavoué J Ann Occup Hyg; 2016 Apr; 60(3):276-89. PubMed ID: 26721263 [TBL] [Abstract][Full Text] [Related]
40. Percutaneous absorption and exposure assessment of pesticides. Ngo MA; O'Malley M; Maibach HI J Appl Toxicol; 2010 Mar; 30(2):91-114. PubMed ID: 20033883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]