These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 2668849)
1. Inactivation of the N-myc gene product by single amino acid substitution of leucine residues located in the leucine-zipper region. Nakajima H; Ikeda M; Tsuchida N; Nishimura S; Taya Y Oncogene; 1989 Aug; 4(8):999-1002. PubMed ID: 2668849 [TBL] [Abstract][Full Text] [Related]
2. Involvement of the 'leucine zipper' region in the oligomerization and transforming activity of human c-myc protein. Dang CV; McGuire M; Buckmire M; Lee WM Nature; 1989 Feb; 337(6208):664-6. PubMed ID: 2645525 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of the carboxy-terminal transforming region of v-Myc: binding to Max is necessary, but not sufficient, for cellular transformation. Min S; Mascarenhas NT; Taparowsky EJ Oncogene; 1993 Oct; 8(10):2691-701. PubMed ID: 8378081 [TBL] [Abstract][Full Text] [Related]
4. Determination of sequences responsible for the differential regulation of Myc function by delta Max and Max. Västrik I; Mäkelä TP; Koskinen PJ; Alitalo K Oncogene; 1995 Aug; 11(3):553-60. PubMed ID: 7630640 [TBL] [Abstract][Full Text] [Related]
5. Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Koskinen PJ; Ayer DE; Eisenman RN Cell Growth Differ; 1995 Jun; 6(6):623-9. PubMed ID: 7669717 [TBL] [Abstract][Full Text] [Related]
6. Differential effects by Mad and Max on transformation by cellular and viral oncoproteins. Cerni C; Bousset K; Seelos C; Burkhardt H; Henriksson M; Lüscher B Oncogene; 1995 Aug; 11(3):587-96. PubMed ID: 7630643 [TBL] [Abstract][Full Text] [Related]
7. The transforming activity of the chicken c-myc gene can be potentiated by mutations. Frykberg L; Graf T; Vennström B Oncogene; 1987; 1(4):415-22. PubMed ID: 3330784 [TBL] [Abstract][Full Text] [Related]
8. DNA binding by N- and L-Myc proteins. Ma A; Moroy T; Collum R; Weintraub H; Alt FW; Blackwell TK Oncogene; 1993 Apr; 8(4):1093-8. PubMed ID: 8455937 [TBL] [Abstract][Full Text] [Related]
9. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483 [TBL] [Abstract][Full Text] [Related]
10. The leucine zipper domain of avian cMyc is required for transformation and autoregulation. Crouch DH; Lang C; Gillespie DA Oncogene; 1990 May; 5(5):683-9. PubMed ID: 2189105 [TBL] [Abstract][Full Text] [Related]
11. Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2. Choe C; Chen N; Sawadogo M Exp Cell Res; 2005 Jan; 302(1):1-10. PubMed ID: 15541720 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of the N-terminal domain of the Myc oncoprotein. Oster SK; Mao DY; Kennedy J; Penn LZ Oncogene; 2003 Apr; 22(13):1998-2010. PubMed ID: 12673205 [TBL] [Abstract][Full Text] [Related]
13. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max. Davis LJ; Halazonetis TD Oncogene; 1993 Jan; 8(1):125-32. PubMed ID: 8423990 [TBL] [Abstract][Full Text] [Related]
14. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1. Rao G; Alland L; Guida P; Schreiber-Agus N; Chen K; Chin L; Rochelle JM; Seldin MF; Skoultchi AI; DePinho RA Oncogene; 1996 Mar; 12(5):1165-72. PubMed ID: 8649810 [TBL] [Abstract][Full Text] [Related]
15. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350 [TBL] [Abstract][Full Text] [Related]
16. Mouse and rat B-myc share amino acid sequence homology with the c-myc transcriptional activator domain and contain a B-myc specific carboxy terminal region. Asker CE; Magnusson KP; Piccoli SP; Andersson K; Klein G; Cole MD; Wiman KG Oncogene; 1995 Nov; 11(10):1963-9. PubMed ID: 7478514 [TBL] [Abstract][Full Text] [Related]
17. Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity. Crouch DH; Fisher F; Clark W; Jayaraman PS; Goding CR; Gillespie DA Oncogene; 1993 Jul; 8(7):1849-55. PubMed ID: 8510929 [TBL] [Abstract][Full Text] [Related]
18. The Myb leucine zipper is essential for leukemogenicity of the v-Myb protein. Bartůnek P; Karafiát V; Dvoráková M; Záhorová V; Mandíková S; Zenke M; Dvorák M Oncogene; 1997 Dec; 15(24):2939-49. PubMed ID: 9416837 [TBL] [Abstract][Full Text] [Related]
19. Structure of mutant and wild-type MC29 v-myc alleles and biochemical properties of their protein products. Bister K; Trachmann C; Jansen HW; Schroeer B; Patschinsky T Oncogene; 1987 May; 1(2):97-109. PubMed ID: 3438084 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence. Giorello L; Clerico L; Pescarolo MP; Vikhanskaya F; Salmona M; Colella G; Bruno S; Mancuso T; Bagnasco L; Russo P; Parodi S Cancer Res; 1998 Aug; 58(16):3654-9. PubMed ID: 9721875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]